This article includes a list of general references, but it lacks sufficient corresponding inline citations. (May 2021) |
In physical cosmology, the quark epoch was the period in the evolution of the early universe when the fundamental interactions of gravitation, electromagnetism, the strong interaction and the weak interaction had taken their present forms, but the temperature of the universe was still too high to allow quarks to bind together to form hadrons.[1] The quark epoch began approximately 10−12 seconds after the Big Bang, when the preceding electroweak epoch ended as the electroweak interaction separated into the weak interaction and electromagnetism. During the quark epoch, the universe was filled with a dense, hot quark–gluon plasma, containing quarks, leptons and their antiparticles. Collisions between particles were too energetic to allow quarks to combine into mesons or baryons. The quark epoch ended when the universe was about 10−6 seconds old, when the average energy of particle interactions had fallen below the binding energy of hadrons. The following period, when quarks became confined within hadrons, is known as the hadron epoch.
See also
editReferences
edit- ^ Rafelski, Johann (October–November 2013). "Connecting QGP-Heavy Ion Physics to the Early Universe". Nuclear Physics B: Proceedings Supplements. 243–244: 155–162. arXiv:1306.2471. Bibcode:2013NuPhS.243..155R. doi:10.1016/j.nuclphysbps.2013.09.017. S2CID 118460277 – via ResearchGate.
Further reading
edit- Allday, Jonathan (2002). Quarks, Leptons and the Big Bang (Second ed.). Taylor & Francis. ISBN 978-0-7503-0806-9.