Great snub icosidodecahedron

Great snub icosidodecahedron
Type Uniform star polyhedron
Elements F = 92, E = 150
V = 60 (χ = 2)
Faces by sides (20+60){3}+12{5/2}
Coxeter diagram
Wythoff symbol | 2 5/2 3
Symmetry group I, [5,3]+, 532
Index references U57, C88, W113
Dual polyhedron Great pentagonal hexecontahedron
Vertex figure
34.5/2
Bowers acronym Gosid

In geometry, the great snub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U57. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices.[1] It can be represented by a Schläfli symbol sr{52,3}, and Coxeter-Dynkin diagram .

3D model of a great snub icosidodecahedron

This polyhedron is the snub member of a family that includes the great icosahedron, the great stellated dodecahedron and the great icosidodecahedron.

In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great inverted snub icosidodecahedron, and vice versa.

Cartesian coordinates

edit

Let   be the positive zero of the polynomial  , where   is the golden ratio. Let the point   be given by

 .

Let the matrix   be given by

 .

  is the rotation around the axis   by an angle of  , counterclockwise. Let the linear transformations   be the transformations which send a point   to the even permutations of   with an even number of minus signs. The transformations   constitute the group of rotational symmetries of a regular tetrahedron. The transformations    ,   constitute the group of rotational symmetries of a regular icosahedron. Then the 60 points   are the vertices of a great snub icosahedron. The edge length equals  , the circumradius equals  , and the midradius equals  .

For a great snub icosidodecahedron whose edge length is 1, the circumradius is

 

Its midradius is

 

The four positive real roots of the sextic in R2,   are, in order, the circumradii of the great retrosnub icosidodecahedron (U74), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69) and snub dodecahedron (U29).

edit

Great pentagonal hexecontahedron

edit
Great pentagonal hexecontahedron
 
Type Star polyhedron
Face  
Elements F = 60, E = 150
V = 92 (χ = 2)
Symmetry group I, [5,3]+, 532
Index references DU57
dual polyhedron Great snub icosidodecahedron
 
3D model of a great pentagonal hexecontahedron

The great pentagonal hexecontahedron (or great petaloid ditriacontahedron) is a nonconvex isohedral polyhedron and dual to the uniform great snub icosidodecahedron. It has 60 intersecting irregular pentagonal faces, 120 edges, and 92 vertices.

Proportions

edit

Denote the golden ratio by  . Let   be the negative zero of the polynomial  . Then each pentagonal face has four equal angles of   and one angle of  . Each face has three long and two short edges. The ratio   between the lengths of the long and the short edges is given by

 .

The dihedral angle equals  . Part of each face lies inside the solid, hence is invisible in solid models. The other two zeroes of the polynomial   play a similar role in the description of the great inverted pentagonal hexecontahedron and the great pentagrammic hexecontahedron.

See also

edit

References

edit
  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR 0730208
  1. ^ Maeder, Roman. "57: great snub icosidodecahedron". MathConsult.
edit