Kontaminierte Normalverteilung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die kontaminierte Normalverteilung ist eine besondere Form der Mischverteilung. Sie spielt eine große Rolle in der robusten Statistik bei der Untersuchung statistischer Schätzer und statistischer Tests.

Die reelle Zufallsvariable hat eine kontaminierte Normalverteilung, wenn sich ihre Dichtefunktion in der Form

mit und , also als Konvexkombination von zwei Normalverteilungs-Dichtefunktionen darstellen lässt.

Die Verteilungsfunktion hat dann die Gestalt

,

wobei die Verteilungsfunktion der Standardnormalverteilung bezeichnet.

Erwartungswert und Varianz

[Bearbeiten | Quelltext bearbeiten]

Für den Erwartungswert und die Varianz gilt:

,
.

Oft werden durch zusätzliche Bedingungen wie Spezialfälle abgeleitet (skalenkontaminierte Normalverteilung).

Ein Hersteller von elektronischen Geräten benutzt Kondensatoren mit der Kapazität 5 Nanofarad [nF], die er von zwei Herstellern bezieht. Die von A hergestellten zeigen eine etwas geringere Streuung als die vom B. Vom Hersteller A stammen 60 % der bezogenen Kondensatoren, von B 40 %. Man nehme an, im genügend weiten Bereich ist die Kapazität der Kondensatoren von beiden Herstellern normalverteilt mit Parametern . Sei und .

Eine Abweichung von mehr als 10 % vom Sollwert der Kapazität sei unerwünscht. Es stellt sich daher die folgende Frage: Wie hoch ist die Wahrscheinlichkeit, dass ein Kondensator eine um mehr als 10 % abweichende Kapazität vom Sollwert aufweist?

Ein Anteil von zirka 0,000361849 aller Kondensatoren zeigt bezüglich der Kapazität eine höhere Abweichung als 10 %.