Allene
Als Allene (Betonung auf der zweiten Silbe: Allene) bezeichnet man eine Stoffgruppe in der organischen Chemie, deren Mitglieder sich durch die Abfolge ihrer Kohlenstoff-Kohlenstoff-Verknüpfung auszeichnet: sie haben zwei direkt benachbarte, also kumulierte Doppelbindungen.[1] Somit enthalten sie das Strukturelement C=C=C. Der einfachste Vertreter der Allene ist das Propadien.
Ob die Allene zu der Stoffgruppe der Kumulene hinzuzurechnen sind, wird in der Fachliteratur kontrovers diskutiert. Der Römpp[2] bejaht dies, das Gold Book[3] dagegen definiert die Kumulene als Verbindungen mit einer Abfolge von mindestens drei kumulierten Doppelbindungen und schließt damit die Allene von den Kumulenen aus.
Struktur
BearbeitenDie C=C=C-Gruppe ist linear aufgebaut, das mittlere Kohlenstoffatom ist sp-hybridisiert. Die randständigen C-Atome sind sp2-hybridisiert.
Die Substituenten von Allenen bzw. Kumulenen mit einer geraden Anzahl an kumulierten Doppelbindungen liegen nicht in einer Ebene, sondern sind um 90° zueinander gedreht. Daraus folgt, dass die Moleküle eine axiale Chiralität aufweisen können, unter den Bedingungen R1≠R2 und R3≠R4.[4] Einzelne Isomere können durch stereoselektive Synthesestrategien gezielt synthetisiert oder aus dem Gemisch durch geeignete Methoden isoliert werden. Die Bestimmung der absoluten Konfiguration eines Isomers erfolgt nach dem Cahn-Ingold-Prelog-System. Zur Kennzeichnung werden entweder die stereochemischen Deskriptoren Ra und Sa oder die Plus (P)- / Minus (M)-Notation verwendet.[5]
Vorkommen
BearbeitenSubstanzen mit Allen-Struktur kommen als Naturstoffe vor, so z. B. im Peridinin, einem in Dinoflagellaten vorkommenden Carotinoid. Methyltetradeca-2,4,5-trienoat, das Pheromon des männlichen Speisebohnenkäfers (Acanthoscelides obtectus) hat ebenfalls eine Allen-Einheit.[6] Auch cyclische Allene sind aus der Natur bekannt.[7]
Synthese
BearbeitenIm Labor können Allene auf unterschiedlichen Wegen dargestellt werden.
- Eine Möglichkeit hierzu ist die konjugierte 1,6-Addition an Enine.[8]
- Auch die Reduktion von Propargylhalogeniden oder -acetalen führt zu Allenen.[9]
- Crabbé-Allensynthese von endständigen Alkinen mit Formaldehyd und Kupfer(I)-bromid unter Basenzusatz.[10]
- Aus geminalen Dihalocyclopropanen kann mittels Organolithiumbasen ein Carben erhalten werden, das nach einer Skattebøl-Umlagerung zu Allenen führt.[11]
- Als Wittig-Reaktion von Triphenylphosphit mit einem Säurehalogenid, mit anschließender Dehydrohalogenierung.[12]
- Die Dehalogenierung von 2,3-Dihalogenpropenen mit Zink liefert ebenfalls Allene.[13]
- Die Grundverbindung Propadien kann beispielsweise durch Dehydrohalogenierung von 2,3-Dichlorpropen mit Zink hergestellt werden.[14]
Eigenschaften
BearbeitenEin Vergleich der relativen Stabilität zeigt, dass konjugierte Diene stabiler als isolierte Diene und jene stabiler als Allene sind.[15]
Literatur
Bearbeiten- Norbert Krause, A. Stephen Hashmi: Modern allene chemistry. Wiley-VCH Weinheim 2004, ISBN 3-527-30671-4 (Auszug in der Google-Buchsuche)
- Alan R. Katritzky, Otto Meth-Cohn, Charles Wayne Rees: Comprehensive organic functional group transformations. Elsevier Science 1995, ISBN 0-08-040604-1, S. 953–996 (eingeschränkte Vorschau in der Google-Buchsuche)
- Kay M. Brummond (Hrsg.) Allene chemistry Thematische Serie im Open Access Beilstein Journal of Organic Chemistry
Weblinks
BearbeitenEinzelnachweise
Bearbeiten- ↑ Eintrag zu Allenes. In: IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. doi:10.1351/goldbook.A00238 – Version: 2.1.5.
- ↑ Eintrag zu Kumulene. In: Römpp Online. Georg Thieme Verlag, abgerufen am 21. Juni 2014.
- ↑ Eintrag zu Cumulenes. In: IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. doi:10.1351/goldbook.C01440 – Version: 2.1.5.
- ↑ Ivan Ernest: Bindung, Struktur und Reaktionsmechanismen in der organischen Chemie, Springer-Verlag, 1972, S. 28, ISBN 3-211-81060-9.
- ↑ Eintrag zu Axiale Chiralität. In: IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. doi:10.1351/goldbook.A00547 – Version: 2.1.5.
- ↑ Horler, D.F.: (–)-Methyl n-tetradeca-trans-2,4,5-trienoate, an allenic ester produced by the male dried bean beetle, Acanthoscelides obtectus (Say). J. Chem. Soc. 1970, S. 859–862 doi:10.1039/J39700000859.
- ↑ Ferdinand Bohlmann, Jasmin Jakupovic, Rajinder K. Gupta, Robert M. King, Harold Robinson: Allenic germacranolides, bourbonene derived lactones and other constituents from Vernonia species. In: Phytochemistry, Volume 20, Issue 3, 13 March 1981, S. 473–480 doi:10.1016/S0031-9422(00)84169-2.
- ↑ N. Krause, A. Gerold: Regio- und stereoselektive Synthesen mit Organokupferreagentien. In: Angewandte Chemie 1997, Vol. 109 (3), S. 194–213. doi:10.1002/ange.19971090304.
- ↑ L. Brandsma, H. D. Verkruijsse: Synthesis of acetylenes, allenes and cumulenes: methods and techniques. Elsevier Oxford 2004, ISBN 0-12-125751-7 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Pierre Crabbé, Bahman Nassim, Maria-Teresa Robert-Lopes: One-Step Homologation of Acatylenes to Allenes: 4-Hydroxynona-1,2-diene In: Organic Syntheses. 63, 1985, S. 203, doi:10.15227/orgsyn.063.0203; Coll. Vol. 7, 1990, S. 276 (PDF).
- ↑ Lars Skattebøl: Chemistry of gem-Dihalocyclopropanes. V.1 Formation of Tricyclo[4.1.0.04,6]heptane and Derivatives. in: J. Org. Chem. 1966, 31(9), S. 2789–2794 doi:10.1021/jo01347a014.
- ↑ Robert W. Lang, Hans-Jürgen Hansen: Eine einfache Allencarbonsäureester-Synthese mittels der Wittig-Reaktion. In: Helv. Chim. Acta. 63. Jahrgang, Nr. 2, 1980, S. 438–455, doi:10.1002/hlca.19800630215.
- ↑ Siegfried Hauptmann: Organische Chemie, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 245, ISBN 3-342-00280-8.
- ↑ ALLENE. In: Organic Syntheses. Band 42, 1962, S. 12, doi:10.15227/orgsyn.042.0012 (orgsyn.org [abgerufen am 11. Dezember 2024]).
- ↑ Paula Yurkanis Bruice: Organic Chemistry, Pearson Education Inc., 2004, 4. Auflage, S. 302, ISBN 0-13-121730-5.