Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar:171:108178.
doi: 10.1016/j.compbiomed.2024.108178. Epub 2024 Feb 19.

Flight traits of dengue-infected Aedes aegypti mosquitoes

Affiliations
Free article

Flight traits of dengue-infected Aedes aegypti mosquitoes

Nouman Javed et al. Comput Biol Med. 2024 Mar.
Free article

Abstract

Understanding the flight behaviour of dengue-infected mosquitoes can play a vital role in various contexts, including modelling disease risks and developing effective interventions against dengue. Studies on the locomotor activity of dengue-infected mosquitoes have often faced challenges in terms of methodology. Some studies used small tubes, which impacted the natural movement of the mosquitoes, while others that used cages did not capture the three-dimensional flights, despite mosquitoes naturally flying in three dimensions. In this study, we utilised Mask RCNN (Region-based Convolutional Neural Network) along with cubic spline interpolation to comprehensively track the three-dimensional flight behaviour of dengue-infected Aedes aegypti mosquitoes. This analysis considered a number of parameters as characteristics of mosquito flight, including flight duration, number of flights, Euclidean distance, flight speed, and the volume (space) covered during flights. The accuracy achieved for mosquito detection and tracking was 98.34% for flying mosquitoes and 100% for resting mosquitoes. Notably, the interpolated data accounted for only 0.31%, underscoring the reliability of the results. Flight traits results revealed that exposure to the dengue virus significantly increases the flight duration (p-value 0.0135 × 10-3) and volume (space) covered during flights (p-value 0.029) whilst decreasing the total number of flights compared to uninfected mosquitoes. The study did not observe any evident impact on the Euclidean distance (p-value 0.064) and speed (p-value 0.064) of Aedes aegypti. These results highlight the intricate relationship between dengue infection and the flight behaviour of Aedes aegypti, providing valuable insights into the virus transmission dynamics. This study focused on dengue-infected Aedes aegypti mosquitoes; future research can explore the impact of other arboviruses on mosquito flight behaviour.

Keywords: Euclidean distance; Flight behaviour; Flight speed; Locomotor activity; Mask RCNN; Volume.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources