Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb;108(1):1-55.
doi: 10.1016/0025-5564(92)90002-e.

Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies

Affiliations

Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies

S Pavlou et al. Math Biosci. 1992 Feb.

Abstract

Predator-prey systems in continuously operated chemostats exhibit sustained oscillations over a wide range of operating conditions. When the chemostat is operated periodically, the interaction of the natural oscillation frequency with the external forcing gives rise to a wealth of dynamic behavior patterns. Using numerical bifurcation techniques, we perform a detailed computational study of these patterns and the transitions (local and especially global) between them as the amplitude and frequency of the forcing vary. The transition from low-forcing-amplitude quasiperiodicity to entrainment of the chemostat behavior by strong forcing (involving the concerted closing of resonance horns) is analyzed. We concentrate on certain strong resonance phenomena between the two frequencies and provide an extensive atlas of computed phase portraits for our model system. Our observations corroborate recent mathematical results and case studies of periodically forced chemical oscillators. In particular, the existence and relative succession of several distinct types of global bifurcations resulting in chaotic transients and multistability are studied in detail. The location in the operating diagram of several key codimension 2 local bifurcations of periodic solutions is computed, and their interaction with an interesting feature we name "real-eigenvalues horns" is examined.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources