Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):623–631. doi: 10.1042/BJ20020289

C-terminal domain of rodent intestinal mucin Muc3 is proteolytically cleaved in the endoplasmic reticulum to generate extracellular and membrane components.

Rongquan Wang 1, Ismat A Khatri 1, Janet F Forstner 1
PMCID: PMC1222797  PMID: 12027806

Abstract

Although human MUC3 and rodent Muc3 are both membrane-associated intestinal mucins, the present study has explored the possibility that rodent Muc3 might exist in soluble as well as membrane forms. No evidence was obtained for the existence of soluble splice variants; however, experiments with heterologous cells transfected with cDNA encoding the 381-residue C-terminal domain of rodent Muc3 showed that a definitive proteolytic cleavage occurs during processing in the endoplasmic reticulum. The products consisted of a V5-tagged 30 kDa extracellular glycopeptide and a Myc-tagged 49 kDa membrane-associated glycopeptide. Throughout their cellular transport to the plasma membrane, the two fragments remained associated by non-covalent SDS-sensitive interactions. Site-specific mutagenesis pinpointed the need for glycine and serine residues in the cleavage sequence Leu-Ser-Lys-Gly-Ser-Ile-Val-Val, which is localized between the two epidermal-growth-factor-like motifs of the mucin. A similar cleavage sequence (Phe-Arg-Pro-Gly downward arrow Ser-Val-Val-Val, where downward arrow signifies the cleavage site) has been reported in human MUC1 and analogous sites are present in human MUC3, MUC12 and MUC17. Thus early proteolytic cleavage may be a conserved characteristic of many membrane-associated mucins, possibly as a prelude to later release of their large extracellular domains at cell surfaces.

Full Text

The Full Text of this article is available as a PDF (212.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baruch A., Hartmann M., Yoeli M., Adereth Y., Greenstein S., Stadler Y., Skornik Y., Zaretsky J., Smorodinsky N. I., Keydar I. The breast cancer-associated MUC1 gene generates both a receptor and its cognate binding protein. Cancer Res. 1999 Apr 1;59(7):1552–1561. [PubMed] [Google Scholar]
  2. Baruch A., Hartmann M., Zrihan-Licht S., Greenstein S., Burstein M., Keydar I., Weiss M., Smorodinsky N., Wreschner D. H. Preferential expression of novel MUC1 tumor antigen isoforms in human epithelial tumors and their tumor-potentiating function. Int J Cancer. 1997 May 29;71(5):741–749. doi: 10.1002/(sici)1097-0215(19970529)71:5<741::aid-ijc9>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  3. Boshell M., Lalani E. N., Pemberton L., Burchell J., Gendler S., Taylor-Papadimitriou J. The product of the human MUC1 gene when secreted by mouse cells transfected with the full-length cDNA lacks the cytoplasmic tail. Biochem Biophys Res Commun. 1992 May 29;185(1):1–8. doi: 10.1016/s0006-291x(05)80946-5. [DOI] [PubMed] [Google Scholar]
  4. Buisine M. P., Desreumaux P., Leteurtre E., Copin M. C., Colombel J. F., Porchet N., Aubert J. P. Mucin gene expression in intestinal epithelial cells in Crohn's disease. Gut. 2001 Oct;49(4):544–551. doi: 10.1136/gut.49.4.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carraway K. L., Fregien N., Carraway K. L., 3rd, Carraway C. A. Tumor sialomucin complexes as tumor antigens and modulators of cellular interactions and proliferation. J Cell Sci. 1992 Oct;103(Pt 2):299–307. doi: 10.1242/jcs.103.2.299. [DOI] [PubMed] [Google Scholar]
  6. Choudhury A., Moniaux N., Ringel J., King J., Moore E., Aubert J. P., Batra S. K. Alternate splicing at the 3'-end of the human pancreatic tumor-associated mucin MUC4 cDNA. Teratog Carcinog Mutagen. 2001;21(1):83–96. doi: 10.1002/1520-6866(2001)21:1<83::aid-tcm8>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  7. Choudhury A., Moniaux N., Winpenny J. P., Hollingsworth M. A., Aubert J. P., Batra S. K. Human MUC4 mucin cDNA and its variants in pancreatic carcinoma. J Biochem. 2000 Aug;128(2):233–243. doi: 10.1093/oxfordjournals.jbchem.a022746. [DOI] [PubMed] [Google Scholar]
  8. Crawley S. C., Gum J. R., Jr, Hicks J. W., Pratt W. S., Aubert J. P., Swallow D. M., Kim Y. S. Genomic organization and structure of the 3' region of human MUC3: alternative splicing predicts membrane-bound and soluble forms of the mucin. Biochem Biophys Res Commun. 1999 Oct 5;263(3):728–736. doi: 10.1006/bbrc.1999.1466. [DOI] [PubMed] [Google Scholar]
  9. Gum James R., Jr, Crawley Suzanne C., Hicks James W., Szymkowski David E., Kim Young S. MUC17, a novel membrane-tethered mucin. Biochem Biophys Res Commun. 2002 Mar 1;291(3):466–475. doi: 10.1006/bbrc.2002.6475. [DOI] [PubMed] [Google Scholar]
  10. Hanisch F. G., Müller S. MUC1: the polymorphic appearance of a human mucin. Glycobiology. 2000 May;10(5):439–449. doi: 10.1093/glycob/10.5.439. [DOI] [PubMed] [Google Scholar]
  11. Hartman M., Baruch A., Ron I., Aderet Y., Yoeli M., Sagi-Assif O., Greenstein S., Stadler Y., Weiss M., Harness E. MUC1 isoform specific monoclonal antibody 6E6/2 detects preferential expression of the novel MUC1/Y protein in breast and ovarian cancer. Int J Cancer. 1999 Jul 19;82(2):256–267. doi: 10.1002/(sici)1097-0215(19990719)82:2<256::aid-ijc17>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  12. Hovinga J. K., Schaller J., Stricker H., Wuillemin W. A., Furlan M., Lämmle B. Coagulation factor XII Locarno: the functional defect is caused by the amino acid substitution Arg 353-->Pro leading to loss of a kallikrein cleavage site. Blood. 1994 Aug 15;84(4):1173–1181. [PubMed] [Google Scholar]
  13. Khatri I. A., Forstner G. G., Forstner J. F. The carboxyl-terminal sequence of rat intestinal mucin RMuc3 contains a putative transmembrane region and two EGF-like motifs. Biochim Biophys Acta. 1997 May 22;1326(1):7–11. doi: 10.1016/s0005-2736(97)00063-1. [DOI] [PubMed] [Google Scholar]
  14. Khatri I. A., Ho C., Specian R. D., Forstner J. F. Characteristics of rodent intestinal mucin Muc3 and alterations in a mouse model of human cystic fibrosis. Am J Physiol Gastrointest Liver Physiol. 2001 Jun;280(6):G1321–G1330. doi: 10.1152/ajpgi.2001.280.6.G1321. [DOI] [PubMed] [Google Scholar]
  15. Komatsu M., Carraway C. A., Fregien N. L., Carraway K. L. Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex. J Biol Chem. 1997 Dec 26;272(52):33245–33254. doi: 10.1074/jbc.272.52.33245. [DOI] [PubMed] [Google Scholar]
  16. Ligtenberg M. J., Kruijshaar L., Buijs F., van Meijer M., Litvinov S. V., Hilkens J. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J Biol Chem. 1992 Mar 25;267(9):6171–6177. [PubMed] [Google Scholar]
  17. Lilja H. A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J Clin Invest. 1985 Nov;76(5):1899–1903. doi: 10.1172/JCI112185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Litvinov S. V., Hilkens J. The epithelial sialomucin, episialin, is sialylated during recycling. J Biol Chem. 1993 Oct 5;268(28):21364–21371. [PubMed] [Google Scholar]
  19. Loomes K. M., Senior H. E., West P. M., Roberton A. M. Functional protective role for mucin glycosylated repetitive domains. Eur J Biochem. 1999 Nov;266(1):105–111. doi: 10.1046/j.1432-1327.1999.00824.x. [DOI] [PubMed] [Google Scholar]
  20. McNeer R. R., Huang D., Fregien N. L., Carraway K. L. Sialomucin complex in the rat respiratory tract: a model for its role in epithelial protection. Biochem J. 1998 Mar 1;330(Pt 2):737–744. doi: 10.1042/bj3300737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moniaux N., Escande F., Batra S. K., Porchet N., Laine A., Aubert J. P. Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. Eur J Biochem. 2000 Jul;267(14):4536–4544. doi: 10.1046/j.1432-1327.2000.01504.x. [DOI] [PubMed] [Google Scholar]
  22. Moniaux N., Nollet S., Porchet N., Degand P., Laine A., Aubert J. P. Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem J. 1999 Mar 1;338(Pt 2):325–333. [PMC free article] [PubMed] [Google Scholar]
  23. Moriarty J., Skelly C. M., Bharathan S., Moody C. E., Sherblom A. P. Sialomucin and lytic susceptibility of rat mammary tumor ascites cells. Cancer Res. 1990 Nov 1;50(21):6800–6805. [PubMed] [Google Scholar]
  24. Parry S., Silverman H. S., McDermott K., Willis A., Hollingsworth M. A., Harris A. Identification of MUC1 proteolytic cleavage sites in vivo. Biochem Biophys Res Commun. 2001 May 11;283(3):715–720. doi: 10.1006/bbrc.2001.4775. [DOI] [PubMed] [Google Scholar]
  25. Pimental R. A., Julian J., Gendler S. J., Carson D. D. Synthesis and intracellular trafficking of Muc-1 and mucins by polarized mouse uterine epithelial cells. J Biol Chem. 1996 Nov 8;271(45):28128–28137. doi: 10.1074/jbc.271.45.28128. [DOI] [PubMed] [Google Scholar]
  26. Rossi E. A., McNeer R. R., Price-Schiavi S. A., Van den Brande J. M., Komatsu M., Thompson J. F., Carraway C. A., Fregien N. L., Carraway K. L. Sialomucin complex, a heterodimeric glycoprotein complex. Expression as a soluble, secretable form in lactating mammary gland and colon. J Biol Chem. 1996 Dec 27;271(52):33476–33485. doi: 10.1074/jbc.271.52.33476. [DOI] [PubMed] [Google Scholar]
  27. Shekels L. L., Hunninghake D. A., Tisdale A. S., Gipson I. K., Kieliszewski M., Kozak C. A., Ho S. B. Cloning and characterization of mouse intestinal MUC3 mucin: 3' sequence contains epidermal-growth-factor-like domains. Biochem J. 1998 Mar 15;330(Pt 3):1301–1308. doi: 10.1042/bj3301301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sheng Z. Q., Hull S. R., Carraway K. L. Biosynthesis of the cell surface sialomucin complex of ascites 13762 rat mammary adenocarcinoma cells from a high molecular weight precursor. J Biol Chem. 1990 May 25;265(15):8505–8510. [PubMed] [Google Scholar]
  29. Sheng Z., Wu K., Carraway K. L., Fregien N. Molecular cloning of the transmembrane component of the 13762 mammary adenocarcinoma sialomucin complex. A new member of the epidermal growth factor superfamily. J Biol Chem. 1992 Aug 15;267(23):16341–16346. [PubMed] [Google Scholar]
  30. Sherblom A. P., Moody C. E. Cell surface sialomucin and resistance to natural cell-mediated cytotoxicity of rat mammary tumor ascites cells. Cancer Res. 1986 Sep;46(9):4543–4546. [PubMed] [Google Scholar]
  31. Shirazi T., Longman R. J., Corfield A. P., Probert C. S. Mucins and inflammatory bowel disease. Postgrad Med J. 2000 Aug;76(898):473–478. doi: 10.1136/pmj.76.898.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smorodinsky N., Weiss M., Hartmann M. L., Baruch A., Harness E., Yaakobovitz M., Keydar I., Wreschner D. H. Detection of a secreted MUC1/SEC protein by MUC1 isoform specific monoclonal antibodies. Biochem Biophys Res Commun. 1996 Nov 1;228(1):115–121. doi: 10.1006/bbrc.1996.1625. [DOI] [PubMed] [Google Scholar]
  33. Williams S. J., McGuckin M. A., Gotley D. C., Eyre H. J., Sutherland G. R., Antalis T. M. Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res. 1999 Aug 15;59(16):4083–4089. [PubMed] [Google Scholar]
  34. Williams S. J., Munster D. J., Quin R. J., Gotley D. C., McGuckin M. A. The MUC3 gene encodes a transmembrane mucin and is alternatively spliced. Biochem Biophys Res Commun. 1999 Jul 22;261(1):83–89. doi: 10.1006/bbrc.1999.1001. [DOI] [PubMed] [Google Scholar]
  35. Williams S. J., Wreschner D. H., Tran M., Eyre H. J., Sutherland G. R., McGuckin M. A. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem. 2001 Feb 26;276(21):18327–18336. doi: 10.1074/jbc.M008850200. [DOI] [PubMed] [Google Scholar]
  36. Wreschner Daniel H., McGuckin Michael A., Williams Stefanie J., Baruch Amos, Yoeli Merav, Ziv Ravit, Okun Liron, Zaretsky Joseph, Smorodinsky Nechama, Keydar Iafa. Generation of ligand-receptor alliances by "SEA" module-mediated cleavage of membrane-associated mucin proteins. Protein Sci. 2002 Mar;11(3):698–706. doi: 10.1110/ps.16502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xu G., Bell S. L., McCool D., Forstner J. F. The cationic C-terminus of rat Muc2 facilitates dimer formation post translationally and is subsequently removed by furin. Eur J Biochem. 2000 May;267(10):2998–3004. doi: 10.1046/j.1432-1033.2000.01319.x. [DOI] [PubMed] [Google Scholar]
  38. van Klinken B. J., Oussoren E., Weenink J. J., Strous G. J., Büller H. A., Dekker J., Einerhand A. W. The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj J. 1996 Oct;13(5):757–768. doi: 10.1007/BF00702340. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES