Jump to content

June 2020 lunar eclipse

From Wikipedia, the free encyclopedia

June 2020 lunar eclipse
Penumbral eclipse
Penumbral eclipse as viewed from Johannesburg, South Africa, 19:18 UTC
DateJune 5, 2020
Gamma1.2406
Magnitude−0.4036
Saros cycle111 (67 of 71)
Penumbral198 minutes, 13 seconds
Contacts (UTC)
P117:45:50
Greatest19:25:02
P421:04:03

A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Friday, June 5, 2020,[1] with an umbral magnitude of −0.4036. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 2.8 days after perigee (on June 2, 2020, at 23:40 UTC), the Moon's apparent diameter was larger.[2]

This eclipse was the second of four penumbral lunar eclipses in 2020, with the others occurring on January 10, July 5, and November 30.

Visibility

[edit]

The eclipse was completely visible over east Africa, eastern Europe, Asia, and Australia, seen rising over west Africa, Europe, and eastern South America and setting over northeast Asia and the western Pacific Ocean.[3]


Visibility map
[edit]

Eclipse details

[edit]

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

June 5, 2020 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 0.56993
Umbral Magnitude −0.40361
Gamma 1.24063
Sun Right Ascension 04h57m21.6s
Sun Declination +22°39'21.3"
Sun Semi-Diameter 15'45.7"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 16h58m25.6s
Moon Declination -21°27'08.8"
Moon Semi-Diameter 16'11.4"
Moon Equatorial Horizontal Parallax 0°59'25.1"
ΔT 69.6 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of June–July 2020
June 5
Descending node (full moon)
June 21
Ascending node (new moon)
July 5
Descending node (full moon)
Penumbral lunar eclipse
Lunar Saros 111
Annular solar eclipse
Solar Saros 137
Penumbral lunar eclipse
Lunar Saros 149
[edit]

Eclipses in 2020

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Lunar Saros 111

[edit]

Inex

[edit]

Triad

[edit]

Lunar eclipses of 2020–2023

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on January 10, 2020 and July 5, 2020 occur in the previous lunar year eclipse set.

Lunar eclipse series sets from 2020 to 2023
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
111
2020 Jun 05
Penumbral
1.2406 116
2020 Nov 30
Penumbral
−1.1309
121
2021 May 26
Total
0.4774 126
2021 Nov 19
Partial
−0.4553
131
2022 May 16
Total
−0.2532 136
2022 Nov 08
Total
0.2570
141
2023 May 05
Penumbral
−1.0350 146
2023 Oct 28
Partial
0.9472

Saros 111

[edit]

This eclipse is a part of Saros series 111, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 830 AD. It contains partial eclipses from September 14, 992 AD through April 8, 1335; total eclipses from April 19, 1353 through August 4, 1533; and a second set of partial eclipses from August 16, 1551 through April 23, 1948. The series ends at member 71 as a penumbral eclipse on July 19, 2092.

The longest duration of totality was produced by member 35 at 106 minutes, 14 seconds on June 12, 1443. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

Greatest First
The greatest eclipse of the series occurred on 1443 Jun 12, lasting 106 minutes, 14 seconds.[7] Penumbral Partial Total Central
830 Jun 10
992 Sep 14
1353 Apr 19
1389 May 10
Last
Central Total Partial Penumbral
1497 Jul 14
1533 Aug 04
1948 Apr 23
2092 Jul 19

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1922 and 2200
1922 Mar 13
(Saros 102)
1933 Feb 10
(Saros 103)
1998 Aug 08
(Saros 109)
2009 Jul 07
(Saros 110)
2020 Jun 05
(Saros 111)
2031 May 07
(Saros 112)
2042 Apr 05
(Saros 113)
2053 Mar 04
(Saros 114)
2064 Feb 02
(Saros 115)
2075 Jan 02
(Saros 116)
2085 Dec 01
(Saros 117)
2096 Oct 31
(Saros 118)
2107 Oct 02
(Saros 119)
2118 Aug 31
(Saros 120)
2129 Jul 31
(Saros 121)
2140 Jun 30
(Saros 122)
2151 May 30
(Saros 123)
2162 Apr 29
(Saros 124)
2173 Mar 29
(Saros 125)
2184 Feb 26
(Saros 126)
2195 Jan 26
(Saros 127)

Half-Saros cycle

[edit]

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two partial solar eclipses of Solar Saros 118.

June 1, 2011 June 12, 2029

See also

[edit]

References

[edit]
  1. ^ "June 5–6, 2020 Penumbral Lunar Eclipse". timeanddate. Retrieved 17 November 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 17 November 2024.
  3. ^ "Penumbral Lunar Eclipse of 2020 Jun 05" (PDF). NASA. Retrieved 17 November 2024.
  4. ^ "Penumbral Lunar Eclipse of 2020 Jun 05". EclipseWise.com. Retrieved 17 November 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 111". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 111
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
[edit]