Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 17;63(24):10967-10979.
doi: 10.1021/acs.inorgchem.3c04551. Epub 2024 Jun 4.

Heteroallene Insertions into Tin(II) Alkoxide Bonds

Affiliations

Heteroallene Insertions into Tin(II) Alkoxide Bonds

Aidan T Ryan et al. Inorg Chem. .

Abstract

A series of iso-carbamate complexes have been synthesized by the reaction of [SnII(OiPr)2] or [SnII(OtBu)2] with either aryl or alkyl isocyanates, ONC-R (R = 2,4,6-trimethylphenyl (Mes), 2,6-diisopropylphenyl (Dipp), isopropyl (iPr), cyclohexyl (Cy) and tert-butyl (tBu)). In the case of aryl isocyanates, mono-insertion occurs to form structurally characterized complexes [Sn{κ2-N,O-R-NC(OiPr)O}(μ-OiPr)]2 (1: R = Mes, 2: R = Dipp) and [Sn{κ2-N,O-R-NC(OtBu)O}(μ-OtBu)]2 (3: R = Mes, 4: R = Dipp). The complicated solution-state chemistry of these species has been explored using 1H DOSY experiments. In contrast, reactions of tin(II) alkoxides with alkyl isocyanates result in the formation of bis-insertion products [Sn{κ2-N,O-R-NC(OiPr)O}2] (5: R = iPr, and 6: R = Cy) and [Sn{κ2-N,O-R-NC(OtBu)O}2] (7: R = iPr, 8: R = Cy), of which complexes 6-8 have also been structurally characterized. 1H NMR studies show that the reaction of tBu-NCO with either [Sn(OiPr)2] or [Sn(OtBu)2] results in a reversible mono-insertion. Variable-temperature 2D 1H-1H exchange spectroscopy (VT-2D-EXSY) was used to determine the rate of exchange between free tBu-NCO and the coordinated tBu-iso-carbamate ligand for the {OiPr} alkoxide complex, as well as the activation energy (Ea = 92.2 ± 0.8 kJ mol-1), enthalpy (ΔH = 89.4 ± 0.8 kJ mol-1), and entropy (ΔS = 12.6 ± 2.9 J mol-1 K-1) for the process [Sn(OiPr)2] + tBu-NCO ↔ [Sn{κ2-N,O-tBu-NC(OiPr)O}(OiPr)]. Attempts to form Sn(II) alkyl carbonates by the insertion of CO2 into either [Sn(OiPr)2] or [Sn(OtBu)2] proved unsuccessful. However, 119Sn{1H} NMR spectroscopy of the reaction of excess CO2 with [Sn(OiPr)2] reveals the presence of a new Sn(II) species, i.e., [(iPrO)Sn(O2COiPr)], VT-2D-EXSY (1H) of which confirms the reversible alkyl carbonate formation (Ea = 70.3 ± 13.0 kJ mol-1; ΔH = 68.0 ± 1.3 kJ mol-1 and ΔS = -8.07 ± 2.8 J mol-1 K-1).

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Possible insertion mechanisms of heteroallenes O=C=E (E = O or NR’) into M–NR2 or M–OR bonds. The formation of carbamate, alkyl carbonate, iso-ureide, and iso-carbamate systems from the reaction of metal amides and metal alkoxides with CO2 and isocyanates.
Scheme 1
Scheme 1. Synthesis of Sn(II) Iso-carbamate Complexes 18 via the Mono-insertion of Aryl Isocyanates (14) or the Bis-insertion of Alkyl Isocyanates (58) into Sn–OR Bonds
Figure 2
Figure 2
Solid-state molecular structures of complexes 1 (a), 2 (b), 3 (c), and 4 (d). In all cases, hydrogen atoms have been omitted for clarity, and thermal ellipsoids are shown at 50% probability. For complex 4, solvent of crystallization (toluene) has been omitted for clarity. For complexes 2 and 4 (b, d), only the molecules based around the Sn(1) atoms are shown. The second molecule in each asymmetric unit cell is identical, within experimental error, and omitted for clarity. Symmetry transformations are used to generate equivalent atoms (#); 1: 1 – X, 1 – Y, 1 – Z; 2: −X, 2 – Y, −Z; 3: −X, −Y, −Z; 4; 2 – X, 1 – Y, 1 – Z.
Scheme 2
Scheme 2. Scheme Highlighting the Proposed Identities (and Associated 119Sn NMR Resonances) of the Postulated Species Observed in the Solution State at 298 and 350 K
Figure 3
Figure 3
Molecular structures of compounds 6 (a), 7 (b), and 8 (c) showing the labeling of the asymmetric unit; ellipsoids are shown at 50% probability, and hydrogen atoms are omitted for clarity. Symmetry transformations are used to generate equivalent atoms 7(#); 1 – X, Y, and 1/2 – Z.
Scheme 3
Scheme 3. Reaction of the Sn(II) Alkoxides [Sn(OiPr)2] and [Sn(OtBu)2] with tBu-isocyanate
Figure 4
Figure 4
(a) Proposed reaction between [Sn(OiPr)2] and tBu-isocyanate. (b) 2D EXSY NMR spectrum (at 298 K in d8-Tol) of the reaction between [Sn(OiPr)2] and tBu-isocyanate showing the presence of both free tBu-isocyanate (blue) and tBu-iso-carbamate (orange).
Figure 5
Figure 5
(a) Proposed reaction between [Sn(OiPr)2] and CO2. (b) 2D EXSY NMR spectrum (at 268 K in d8-Tol) of the reaction between [Sn(OiPr)2] and CO2, showing the methine protons of both the isopropoxide group,{Sn-OCHMe2}, (blue) and the isopropoxy carbonate group, {Sn–O2COCHMe2}, (orange), showing exchange.

Similar articles

References

    1. Sinyakov A. E.; Ovchinnikova N. A. Insertion reactions of heterocumulene into metal-ligand bonds. Russ. J. Inorg. Chem. 2013, 58 (14), 1694–1707. 10.1134/S0036023613140040. - DOI
    2. Gibson D. H. The Organometallic Chemistry of Carbon Dioxide. Chem. Rev. 1996, 96 (6), 2063–2096. 10.1021/cr940212c. - DOI - PubMed
    3. Schmidt S.; Schäper R.; Schulz S.; Bläser D.; Wölper C. Insertion Reactions of Heterocumulenes into Zn–C Bonds: Synthesis and Structural Characterization of Multinuclear Zinc Amidate Complexes. Organometallics 2011, 30 (5), 1073–1078. 10.1021/om101107e. - DOI
    1. Germain N.; Müller I.; Hanauer M.; Paciello R. A.; Baumann R.; Trapp O.; Schaub T. Synthesis of Industrially Relevant Carbamates towards Isocyanates using Carbon Dioxide and Organotin(IV) Alkoxides. ChemSusChem 2016, 9 (13), 1586–1590. 10.1002/cssc.201600580. - DOI - PubMed
    2. Ghosh R.; Nethaji M.; Samuelson A. G. Reversible double insertion of aryl isocyanates into the Ti–O bond of titanium(IV) isopropoxide. J. Organomet. Chem. 2005, 690 (5), 1282–1293. 10.1016/j.jorganchem.2004.11.038. - DOI
    3. Yin S.-F.; Maruyama J.; Yamashita T.; Shimada S. Efficient Fixation of Carbon Dioxide by Hypervalent Organobismuth Oxide, Hydroxide, and Alkoxide. Angew. Chem., Int. Ed. 2008, 47 (35), 6590–6593. 10.1002/anie.200802277. - DOI - PubMed
    4. Zhu X.; Du Z.; Xu F.; Shen Q. Ytterbium Triflate: A Highly Active Catalyst for Addition of Amines to Carbodiimides to N,N′,N″-Trisubstituted Guanidines. J. Org. Chem. 2009, 74 (16), 6347–6349. 10.1021/jo900903t. - DOI - PubMed
    5. Zhu X.; Fan J.; Wu Y.; Wang S.; Zhang L.; Yang G.; Wei Y.; Yin C.; Zhu H.; Wu S.; Zhang H. Synthesis, Characterization, Selective Catalytic Activity, and Reactivity of Rare Earth Metal Amides with Different Metal–Nitrogen Bonds. Organometallics 2009, 28 (13), 3882–3888. 10.1021/om900191j. - DOI
    6. Naktode K.; Das S.; Bhattacharjee J.; Nayek H. P.; Panda T. K. Imidazolin-2-iminato Ligand-Supported Titanium Complexes as Catalysts for the Synthesis of Urea Derivatives. Inorg. Chem. 2016, 55 (3), 1142–1153. 10.1021/acs.inorgchem.5b02302. - DOI - PubMed
    1. Ahmet I. Y.; Hill M. S.; Johnson A. L.; Peter L. M. Polymorph-Selective Deposition of High Purity SnS Thin Films from a Single Source Precursor. Chem. Mater. 2015, 27 (22), 7680–7688. 10.1021/acs.chemmater.5b03220. - DOI
    2. Ahmet I. Y.; Hill M. S.; Raithby P. R.; Johnson A. L. Tin guanidinato complexes: oxidative control of Sn, SnS, SnSe and SnTe thin film deposition. Dalton Trans. 2018, 47 (14), 5031–5048. 10.1039/C8DT00773J. - DOI - PubMed
    3. Ahmet I. Y.; Thompson J. R.; Johnson A. L. Oxidative Addition to SnII Guanidinate Complexes: Precursors to Tin(II) Chalcogenide Nanocrystals. Eur. J. Inorg. Chem. 2018, 2018 (15), 1670–1678. 10.1002/ejic.201800071. - DOI
    4. Akhtar J.; Afzaal M.; Vincent M. A.; Burton N. A.; Hillier I. H.; O’Brien P. Low temperature CVD growth of PbS films on plastic substrates. Chem. Commun. 2011, 47 (7), 1991.10.1039/c0cc05036a. - DOI - PubMed
    5. Al-Shakban M.; Matthews P. D.; Lewis E. A.; Raftery J.; Vitorica-Yrezabal I.; Haigh S. J.; Lewis D. J.; O’Brien P. Chemical vapor deposition of tin sulfide from diorganotin(IV) dixanthates. J. Mater. Sci. 2019, 54 (3), 2315–2323. 10.1007/s10853-018-2968-y. - DOI
    6. Buckingham M. A.; Catherall A. L.; Hill M. S.; Johnson A. L.; Parish J. D. Aerosol-Assisted Chemical Vapor Deposition of CdS from Xanthate Single Source Precursors. Cryst. Growth Des. 2017, 17 (2), 907–912. 10.1021/acs.cgd.6b01795. - DOI
    7. Clark J. M.; Kociok-Köhn G.; Harnett N. J.; Hill M. S.; Hill R.; Molloy K. C.; Saponia H.; Stanton D.; Sudlow A. Formation of PbS materials from lead xanthate precursors. Dalton Trans. 2011, 40 (26), 6893.10.1039/c1dt10273g. - DOI - PubMed
    8. Kubiak P. S.; Johnson A. L.; Cameron P. J.; Kociok-Köhn G. Single Source Precursors for Calcium Sulfide (CaS) Deposition. Eur. J. Inorg. Chem. 2019, 2019 (36), 3962–3969. 10.1002/ejic.201900550. - DOI
    9. Qadir A. M.; Dege N. Synthesis and Crystal Structure of Nickel(II) and Zinc(II) Complexes with O-Propylxanthate and N, N, N′,N′-Tetramethylethylenediamine. J. Struct. Chem. 2019, 60 (5), 810–814. 10.1134/S0022476619050147. - DOI
    10. Sullivan H. S. I.; Parish J. D.; Thongchai P.; Kociok-Köhn G.; Hill M. S.; Johnson A. L. Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursors. Inorg. Chem. 2019, 58 (4), 2784–2797. 10.1021/acs.inorgchem.8b03363. - DOI - PubMed
    11. Wildsmith T.; Hill M. S.; Johnson A. L.; Kingsley A. J.; Molloy K. C. Exclusive formation of SnO by low temperature single-source AACVD. Chem. Commun. 2013, 49 (78), 8773.10.1039/c3cc45676e. - DOI - PubMed
    1. Li Z.; Mayer R. J.; Ofial A. R.; Mayr H. From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes. J. Am. Chem. Soc. 2020, 142 (18), 8383–8402. 10.1021/jacs.0c01960. - DOI - PubMed
    2. Bresciani G.; Biancalana L.; Pampaloni G.; Marchetti F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020, 25 (16), 360310.3390/molecules25163603. - DOI - PMC - PubMed
    1. Darensbourg D. J.; Mueller B. L.; Bischoff C. J.; Chojnacki S. S.; Reibenspies J. H. Investigations into the Steric Influences on the Reaction-Mechanism of CO2 Insertion into Metal Oxygen Bonds - Cos Activation as a Model for CO2. Inorg. Chem. 1991, 30 (10), 2418–2424. 10.1021/ic00010a035. - DOI