Heteroallene Insertions into Tin(II) Alkoxide Bonds
- PMID: 38832535
- PMCID: PMC11190973
- DOI: 10.1021/acs.inorgchem.3c04551
Heteroallene Insertions into Tin(II) Alkoxide Bonds
Abstract
A series of iso-carbamate complexes have been synthesized by the reaction of [SnII(OiPr)2] or [SnII(OtBu)2] with either aryl or alkyl isocyanates, ONC-R (R = 2,4,6-trimethylphenyl (Mes), 2,6-diisopropylphenyl (Dipp), isopropyl (iPr), cyclohexyl (Cy) and tert-butyl (tBu)). In the case of aryl isocyanates, mono-insertion occurs to form structurally characterized complexes [Sn{κ2-N,O-R-NC(OiPr)O}(μ-OiPr)]2 (1: R = Mes, 2: R = Dipp) and [Sn{κ2-N,O-R-NC(OtBu)O}(μ-OtBu)]2 (3: R = Mes, 4: R = Dipp). The complicated solution-state chemistry of these species has been explored using 1H DOSY experiments. In contrast, reactions of tin(II) alkoxides with alkyl isocyanates result in the formation of bis-insertion products [Sn{κ2-N,O-R-NC(OiPr)O}2] (5: R = iPr, and 6: R = Cy) and [Sn{κ2-N,O-R-NC(OtBu)O}2] (7: R = iPr, 8: R = Cy), of which complexes 6-8 have also been structurally characterized. 1H NMR studies show that the reaction of tBu-NCO with either [Sn(OiPr)2] or [Sn(OtBu)2] results in a reversible mono-insertion. Variable-temperature 2D 1H-1H exchange spectroscopy (VT-2D-EXSY) was used to determine the rate of exchange between free tBu-NCO and the coordinated tBu-iso-carbamate ligand for the {OiPr} alkoxide complex, as well as the activation energy (Ea = 92.2 ± 0.8 kJ mol-1), enthalpy (ΔH‡ = 89.4 ± 0.8 kJ mol-1), and entropy (ΔS‡ = 12.6 ± 2.9 J mol-1 K-1) for the process [Sn(OiPr)2] + tBu-NCO ↔ [Sn{κ2-N,O-tBu-NC(OiPr)O}(OiPr)]. Attempts to form Sn(II) alkyl carbonates by the insertion of CO2 into either [Sn(OiPr)2] or [Sn(OtBu)2] proved unsuccessful. However, 119Sn{1H} NMR spectroscopy of the reaction of excess CO2 with [Sn(OiPr)2] reveals the presence of a new Sn(II) species, i.e., [(iPrO)Sn(O2COiPr)], VT-2D-EXSY (1H) of which confirms the reversible alkyl carbonate formation (Ea = 70.3 ± 13.0 kJ mol-1; ΔH‡ = 68.0 ± 1.3 kJ mol-1 and ΔS‡ = -8.07 ± 2.8 J mol-1 K-1).
Conflict of interest statement
The authors declare no competing financial interest.
Figures








Similar articles
-
Multinuclear copper(I) guanidinate complexes.Inorg Chem. 2012 Jan 2;51(1):246-57. doi: 10.1021/ic201602m. Epub 2011 Dec 14. Inorg Chem. 2012. PMID: 22168209
-
Diverse modes of reactivity of dialkyl azodicarboxylates with P(III) compounds: synthesis, structure, and reactivity of products other than the Morrison-Brunn-Huisgen intermediate in a Mitsunobu-type reaction.J Org Chem. 2004 Mar 19;69(6):1880-9. doi: 10.1021/jo035634d. J Org Chem. 2004. PMID: 15058933
-
Mechanisms of reactions of open-shell, heavier group 14 derivatives with small molecules: n-π* back-bonding in isocyanide complexes, C-H activation under ambient conditions, CO coupling, and ancillary molecular interactions.Inorg Chem. 2013 Jun 3;52(11):6248-59. doi: 10.1021/ic4007058. Epub 2013 May 17. Inorg Chem. 2013. PMID: 23683137
-
Thermodynamic and kinetic studies of H atom transfer from HMo(CO)3(eta(5)-C5H5) to Mo(N[t-Bu]Ar)3 and (PhCN)Mo(N[t-Bu]Ar)3: direct insertion of benzonitrile into the Mo-H bond of HMo(N[t-Bu]Ar)3 forming (Ph(H)C=N)Mo(N[t-Bu]Ar)3.Inorg Chem. 2008 Oct 20;47(20):9380-9. doi: 10.1021/ic800945m. Epub 2008 Sep 13. Inorg Chem. 2008. PMID: 18788794
-
Triggering water exchange mechanisms via chelate architecture. Shielding of transition metal centers by aminopolycarboxylate spectator ligands.J Am Chem Soc. 2008 Nov 5;130(44):14556-69. doi: 10.1021/ja802842q. Epub 2008 Oct 8. J Am Chem Soc. 2008. PMID: 18839954
References
-
- Sinyakov A. E.; Ovchinnikova N. A. Insertion reactions of heterocumulene into metal-ligand bonds. Russ. J. Inorg. Chem. 2013, 58 (14), 1694–1707. 10.1134/S0036023613140040. - DOI
- Gibson D. H. The Organometallic Chemistry of Carbon Dioxide. Chem. Rev. 1996, 96 (6), 2063–2096. 10.1021/cr940212c. - DOI - PubMed
- Schmidt S.; Schäper R.; Schulz S.; Bläser D.; Wölper C. Insertion Reactions of Heterocumulenes into Zn–C Bonds: Synthesis and Structural Characterization of Multinuclear Zinc Amidate Complexes. Organometallics 2011, 30 (5), 1073–1078. 10.1021/om101107e. - DOI
-
- Germain N.; Müller I.; Hanauer M.; Paciello R. A.; Baumann R.; Trapp O.; Schaub T. Synthesis of Industrially Relevant Carbamates towards Isocyanates using Carbon Dioxide and Organotin(IV) Alkoxides. ChemSusChem 2016, 9 (13), 1586–1590. 10.1002/cssc.201600580. - DOI - PubMed
- Ghosh R.; Nethaji M.; Samuelson A. G. Reversible double insertion of aryl isocyanates into the Ti–O bond of titanium(IV) isopropoxide. J. Organomet. Chem. 2005, 690 (5), 1282–1293. 10.1016/j.jorganchem.2004.11.038. - DOI
- Yin S.-F.; Maruyama J.; Yamashita T.; Shimada S. Efficient Fixation of Carbon Dioxide by Hypervalent Organobismuth Oxide, Hydroxide, and Alkoxide. Angew. Chem., Int. Ed. 2008, 47 (35), 6590–6593. 10.1002/anie.200802277. - DOI - PubMed
- Zhu X.; Du Z.; Xu F.; Shen Q. Ytterbium Triflate: A Highly Active Catalyst for Addition of Amines to Carbodiimides to N,N′,N″-Trisubstituted Guanidines. J. Org. Chem. 2009, 74 (16), 6347–6349. 10.1021/jo900903t. - DOI - PubMed
- Zhu X.; Fan J.; Wu Y.; Wang S.; Zhang L.; Yang G.; Wei Y.; Yin C.; Zhu H.; Wu S.; Zhang H. Synthesis, Characterization, Selective Catalytic Activity, and Reactivity of Rare Earth Metal Amides with Different Metal–Nitrogen Bonds. Organometallics 2009, 28 (13), 3882–3888. 10.1021/om900191j. - DOI
- Naktode K.; Das S.; Bhattacharjee J.; Nayek H. P.; Panda T. K. Imidazolin-2-iminato Ligand-Supported Titanium Complexes as Catalysts for the Synthesis of Urea Derivatives. Inorg. Chem. 2016, 55 (3), 1142–1153. 10.1021/acs.inorgchem.5b02302. - DOI - PubMed
-
- Ahmet I. Y.; Hill M. S.; Johnson A. L.; Peter L. M. Polymorph-Selective Deposition of High Purity SnS Thin Films from a Single Source Precursor. Chem. Mater. 2015, 27 (22), 7680–7688. 10.1021/acs.chemmater.5b03220. - DOI
- Ahmet I. Y.; Hill M. S.; Raithby P. R.; Johnson A. L. Tin guanidinato complexes: oxidative control of Sn, SnS, SnSe and SnTe thin film deposition. Dalton Trans. 2018, 47 (14), 5031–5048. 10.1039/C8DT00773J. - DOI - PubMed
- Ahmet I. Y.; Thompson J. R.; Johnson A. L. Oxidative Addition to SnII Guanidinate Complexes: Precursors to Tin(II) Chalcogenide Nanocrystals. Eur. J. Inorg. Chem. 2018, 2018 (15), 1670–1678. 10.1002/ejic.201800071. - DOI
- Akhtar J.; Afzaal M.; Vincent M. A.; Burton N. A.; Hillier I. H.; O’Brien P. Low temperature CVD growth of PbS films on plastic substrates. Chem. Commun. 2011, 47 (7), 1991.10.1039/c0cc05036a. - DOI - PubMed
- Al-Shakban M.; Matthews P. D.; Lewis E. A.; Raftery J.; Vitorica-Yrezabal I.; Haigh S. J.; Lewis D. J.; O’Brien P. Chemical vapor deposition of tin sulfide from diorganotin(IV) dixanthates. J. Mater. Sci. 2019, 54 (3), 2315–2323. 10.1007/s10853-018-2968-y. - DOI
- Buckingham M. A.; Catherall A. L.; Hill M. S.; Johnson A. L.; Parish J. D. Aerosol-Assisted Chemical Vapor Deposition of CdS from Xanthate Single Source Precursors. Cryst. Growth Des. 2017, 17 (2), 907–912. 10.1021/acs.cgd.6b01795. - DOI
- Clark J. M.; Kociok-Köhn G.; Harnett N. J.; Hill M. S.; Hill R.; Molloy K. C.; Saponia H.; Stanton D.; Sudlow A. Formation of PbS materials from lead xanthate precursors. Dalton Trans. 2011, 40 (26), 6893.10.1039/c1dt10273g. - DOI - PubMed
- Kubiak P. S.; Johnson A. L.; Cameron P. J.; Kociok-Köhn G. Single Source Precursors for Calcium Sulfide (CaS) Deposition. Eur. J. Inorg. Chem. 2019, 2019 (36), 3962–3969. 10.1002/ejic.201900550. - DOI
- Qadir A. M.; Dege N. Synthesis and Crystal Structure of Nickel(II) and Zinc(II) Complexes with O-Propylxanthate and N, N, N′,N′-Tetramethylethylenediamine. J. Struct. Chem. 2019, 60 (5), 810–814. 10.1134/S0022476619050147. - DOI
- Sullivan H. S. I.; Parish J. D.; Thongchai P.; Kociok-Köhn G.; Hill M. S.; Johnson A. L. Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursors. Inorg. Chem. 2019, 58 (4), 2784–2797. 10.1021/acs.inorgchem.8b03363. - DOI - PubMed
- Wildsmith T.; Hill M. S.; Johnson A. L.; Kingsley A. J.; Molloy K. C. Exclusive formation of SnO by low temperature single-source AACVD. Chem. Commun. 2013, 49 (78), 8773.10.1039/c3cc45676e. - DOI - PubMed
-
- Li Z.; Mayer R. J.; Ofial A. R.; Mayr H. From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes. J. Am. Chem. Soc. 2020, 142 (18), 8383–8402. 10.1021/jacs.0c01960. - DOI - PubMed
- Bresciani G.; Biancalana L.; Pampaloni G.; Marchetti F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020, 25 (16), 360310.3390/molecules25163603. - DOI - PMC - PubMed
-
- Darensbourg D. J.; Mueller B. L.; Bischoff C. J.; Chojnacki S. S.; Reibenspies J. H. Investigations into the Steric Influences on the Reaction-Mechanism of CO2 Insertion into Metal Oxygen Bonds - Cos Activation as a Model for CO2. Inorg. Chem. 1991, 30 (10), 2418–2424. 10.1021/ic00010a035. - DOI
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous