Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 1:329:127165.
doi: 10.1016/j.foodchem.2020.127165. Epub 2020 May 27.

Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide

Affiliations

Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide

Tatiya Siripongpreda et al. Food Chem. .

Abstract

Biogenic amines are the important markers for food spoilage, thus, an on-package sensor for biogenic amine detection is crucial for food quality control. A dual detection platform including colorimetry and LDI-MS was developed for screening and quantitative determining of biogenic amines. Porous PLA film, was fabricated using calcium carbonate nanoparticles to enhance film porosity leading to increased surface area of colorimetric sensor. The color intensity significantly increases depending upon the enhanced analyte concentration with a linear range of 2.0-10.0 mg/mL for putrescine, and 0.1-6.0 mg/mL for cadaverine. On another layer, graphene oxide paper was applied as an LDI-MS substrate for sensitive quantification of biogenic amines. LOD values measured on graphene oxide coated side by LDI-MS were found to be 0.07 pM and 0.02 pM for putrescine and cadaverine, respectively. This platform was successfully applied for the detection of biogenic amines in pork samples with satisfactory results.

Keywords: Cadaverine; Calcium carbonate nanoparticles; Dual detection; Food spoilage sensor; Putrescine.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

LinkOut - more resources