TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species
- PMID: 20808775
- PMCID: PMC2927514
- DOI: 10.1371/journal.pbio.1000462
TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species
Abstract
Simian immunodeficiency viruses of sooty mangabeys (SIVsm) are the source of multiple, successful cross-species transmissions, having given rise to HIV-2 in humans, SIVmac in rhesus macaques, and SIVstm in stump-tailed macaques. Cellular assays and phylogenetic comparisons indirectly support a role for TRIM5alpha, the product of the TRIM5 gene, in suppressing interspecies transmission and emergence of retroviruses in nature. Here, we investigate the in vivo role of TRIM5 directly, focusing on transmission of primate immunodeficiency viruses between outbred primate hosts. Specifically, we retrospectively analyzed experimental cross-species transmission of SIVsm in two cohorts of rhesus macaques and found a significant effect of TRIM5 genotype on viral replication levels. The effect was especially pronounced in a cohort of animals infected with SIVsmE543-3, where TRIM5 genotype correlated with approximately 100-fold to 1,000-fold differences in viral replication levels. Surprisingly, transmission occurred even in individuals bearing restrictive TRIM5 genotypes, resulting in attenuation of replication rather than an outright block to infection. In cell-culture assays, the same TRIM5 alleles associated with viral suppression in vivo blocked infectivity of two SIVsm strains, but not the macaque-adapted strain SIVmac239. Adaptations appeared in the viral capsid in animals with restrictive TRIM5 genotypes, and similar adaptations coincide with emergence of SIVmac in captive macaques in the 1970s. Thus, host TRIM5 can suppress viral replication in vivo, exerting selective pressure during the initial stages of cross-species transmission.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures







Comment in
-
TRIMming SIV Transmission between Species.PLoS Biol. 2010 Aug 24;8(8):e1000463. doi: 10.1371/journal.pbio.1000463. PLoS Biol. 2010. PMID: 20808777 Free PMC article. No abstract available.
Similar articles
-
TRIM5α Resistance Escape Mutations in the Capsid Are Transferable between Simian Immunodeficiency Virus Strains.J Virol. 2016 Nov 28;90(24):11087-11095. doi: 10.1128/JVI.01620-16. Print 2016 Dec 15. J Virol. 2016. PMID: 27681142 Free PMC article.
-
TRIM5α restriction affects clinical outcome and disease progression in simian immunodeficiency virus-infected rhesus macaques.J Virol. 2015 Feb;89(4):2233-40. doi: 10.1128/JVI.02978-14. Epub 2014 Dec 3. J Virol. 2015. PMID: 25473059 Free PMC article.
-
Primary SIVsm isolates use the CCR5 coreceptor from sooty mangabeys naturally infected in west Africa: a comparison of coreceptor usage of primary SIVsm, HIV-2, and SIVmac.Virology. 1998 Jun 20;246(1):113-24. doi: 10.1006/viro.1998.9174. Virology. 1998. PMID: 9656999
-
The paradox of simian immunodeficiency virus infection in sooty mangabeys: active viral replication without disease progression.Front Biosci. 2004 Jan 1;9:521-39. doi: 10.2741/1123. Front Biosci. 2004. PMID: 14766388 Review.
-
Naturally SIV-infected sooty mangabeys: are we closer to understanding why they do not develop AIDS?J Med Primatol. 2005 Oct;34(5-6):243-52. doi: 10.1111/j.1600-0684.2005.00122.x. J Med Primatol. 2005. PMID: 16128919 Review.
Cited by
-
A comparison of murine leukemia viruses that escape from human and rhesus macaque TRIM5αs.J Virol. 2013 Jun;87(11):6455-68. doi: 10.1128/JVI.03425-12. Epub 2013 Mar 27. J Virol. 2013. PMID: 23536686 Free PMC article.
-
Diversity of TRIM5α and TRIMCyp sequences in cynomolgus macaques from different geographical origins.Immunogenetics. 2012 Apr;64(4):267-78. doi: 10.1007/s00251-011-0585-x. Epub 2011 Nov 29. Immunogenetics. 2012. PMID: 22124667
-
Role of Human TRIM5α in Intrinsic Immunity.Front Microbiol. 2012 Mar 15;3:97. doi: 10.3389/fmicb.2012.00097. eCollection 2012. Front Microbiol. 2012. PMID: 22435067 Free PMC article.
-
Natural mutations in IFITM3 modulate post-translational regulation and toggle antiviral specificity.EMBO Rep. 2016 Nov;17(11):1657-1671. doi: 10.15252/embr.201642771. Epub 2016 Sep 6. EMBO Rep. 2016. PMID: 27601221 Free PMC article.
-
Host genes important to HIV replication and evolution.Cold Spring Harb Perspect Med. 2012 Apr;2(4):a007203. doi: 10.1101/cshperspect.a007203. Cold Spring Harb Perspect Med. 2012. PMID: 22474614 Free PMC article. Review.
References
-
- Hahn B. H, Shaw G. M, De Cock K. M, Sharp P. M. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287:607–614. - PubMed
-
- Charleston M. A, Robertson D. L. Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst Biol. 2002;51:528–535. - PubMed
-
- Apetrei C, Robertson D. L, Marx P. A. The history of SIVS and AIDS: epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa. Front Biosci. 2004;9:225–254. - PubMed
-
- Gardner M. B. Simian AIDS: an historical perspective. J Med Primatol. 2003;32:180–186. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- AI083118/AI/NIAID NIH HHS/United States
- R01 AI084810/AI/NIAID NIH HHS/United States
- R56 AI077423/AI/NIAID NIH HHS/United States
- RR00168/RR/NCRR NIH HHS/United States
- R01 AI083118/AI/NIAID NIH HHS/United States
- AI084810/AI/NIAID NIH HHS/United States
- R01 AI049809/AI/NIAID NIH HHS/United States
- AI077423/AI/NIAID NIH HHS/United States
- R01 AI057039/AI/NIAID NIH HHS/United States
- P51 RR000168/RR/NCRR NIH HHS/United States
- K26 RR000168/RR/NCRR NIH HHS/United States
- AI049809/AI/NIAID NIH HHS/United States
- AI057039/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources