Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;110(1-2):39-47.
doi: 10.1016/j.jsbmb.2007.10.008. Epub 2008 Feb 12.

Structure-activity relationships of synthetic progestins in a yeast-based in vitro androgen bioassay

Affiliations

Structure-activity relationships of synthetic progestins in a yeast-based in vitro androgen bioassay

L McRobb et al. J Steroid Biochem Mol Biol. 2008 May.

Abstract

The recent identification of tetrahydrogestrinone (THG), a non-marketed designer androgen used for sports doping but previously undetectable by established mass spectrometry-based urine drug screens, and its production by a facile chemical modification of gestrinone has raised concerns about the risks of developing designer androgens from numerous marketed progestins. We therefore have used yeast-based in vitro androgen and progesterone bioassays to conduct a structure-activity study assessing the intrinsic androgenic potential of commercially available progestins and their derivatives, to identify those compounds or structures with the highest risk of forming a basis for such misapplication. Progestins had a wide range of androgenic bioactivity that was not reliably predicted for individual steroids by their progestin bioactivity. 17alpha-Hydroxyprogesterone and 19-norprogesterone derivatives with their bulky 17beta-substituents were strong progestins but generally weak androgens. 17alpha-Ethynylated derivatives of testosterone, 19-nortestosterone and 18-methyl-19-nortestosterone such as gestrinone, ethisterone, norethisterone and norgestrel had the most significant intrinsic androgenicity of all the commercially marketed progestins. Facile chemical modification of the 17alpha-ethynyl group of each of these progestins produces 17alpha-methyl, ethyl and allyl derivatives, including THG and norbolethone, which further enhanced androgenic bioactivity. Thus by using the rapid and sensitive yeast bioassay we have screened a comprehensive set of progestins and associated structures and identified the ethynylated testosterone, 19-nortestosterone and 18-methyl-19-nortestosterone derivatives as possessing the highest risk for abuse and potential for conversion to still more potent androgens. By contrast, modern progestins such as progesterone, 17alpha-hydroxyprogesterone and 19-norprogesterone derivatives had minimal androgenic bioactivity and pose low risk.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources