Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;66(10):2209-15.
doi: 10.1271/bbb.66.2209.

Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans

Affiliations
Free article

Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans

Noriyuki Ochiai et al. Biosci Biotechnol Biochem. 2002 Oct.
Free article

Abstract

We investigated the effects of iprodione and fludioxonil on the pathogenic yeast Candida albicans. Growth of the wild-type IFO1385 strain of C. albicans was inhibited by both fungicides, while Saccharomyces cerevisiae was basically unaffected by them even at a concentration of 25 microg/ml. Both fungicides stimulated glycerol synthesis in C. albicans but not in S. cerevisiae. The antioxidant alpha-tocopherol acetate and the cytochrome P-450 inhibitor piperonyl butoxide antagonized the fungitoxicity of iprodione and fludioxonil in C. albicans. It is known that mutations within the histidine kinase NIK1/OS-1 gene confer resistance to iprodione and fludioxonil in Neurospora crassa, while the fungicide-insensitive S. cerevisiae has only one histidine kinase SLN1 gene in its genome. In contrast, C. albicans has three histidine kinase genes, namely CaSLN1, CaNIK1/COS1, and CaHK1, the null mutants of which were found to impair the hyphal formation. Iprodione and fludioxonil were found to suppress filamentation when the IFO1385 strain was incubated on a solid medium containing fetal bovine serum. These observations suggest that iprodione and fludioxonil interfere with the CaNIK1/COS1 signal transduction pathway, resulting in glycerol synthesis stimulation and the inhibition of hyphal formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms