Прејди на содржината

Транспортна РНК

Од Википедија — слободната енциклопедија
Преработка од 18:43, 5 август 2018; направена од Uvtarex (разговор | придонеси) (Создадено преведувајќи ја страницата „Transfer RNA“)
(разл) ← Претходна преработка | Последна преработка (разл) | Следна преработка → (разл)
Интеракцијата на tRNA и mRNA во синтеза на протеини.

Транспортната РНК (скратено тРНК, порано позната какорастворлива РНК илисРНК[1]) претставува РНК молекула, составена обично од 76 до 90 нуклеотиди,[2] која служи како физичка врска помеѓу информационата РНК (иРНК) и аминокиселинската секвенца на протеините. Оваа врска се остварува на тој начин што тРНК ги носи (транспортира) аминокиселините во рибозомот (клеточната машинерија за синтеза на протеини), за кој веќе е врзана иРНК молекула, чии кодони се „читаат“ од страна на антикодоните на тРНК. Затоа, тРНК молекулите се од суштинско значење за процесот на транслација - биосинтеза на протеините во клетката во согласност со правилата на генетскиот код.

Преглед

Информационата РНК (иРНК) кодира протеини во форма на низа од континуирани кодони, кои се состојат од три последователни азотни бази. Транспортната РНК (тРНК) ги препознава овие кодони на тој начин што во еден дел од молекулата, наречен антикодон, се наоѓаат три азотни бази кои се комплементарни на оние од кодонот на иРНК и способни да се врзат за нив со помош на три водородни врски. (3) На спротивниот крај од антикодонот во молекулата на тРНК се наоѓа место за ковалентно врзување на специфична аминокиселина, која одговара на секвенцата на антикодонот. Секој тип на тРНК молекула може да врзе само една од 20-те протеиногени аминокиселини, па затоа секој организам поседува многу типови на тРНК молекули. Бидејќи во генетскиот код често се случува да постојат повеќе кодони за една иста аминокиселина, затоа постојат и повеќе тРНК молекули со различни антикодони, кои ја врзуваат истата аминокиселина.

Ковалентното врзување на аминокиселината за 3’ крајот на тРНК е катализирано од група на ензими наречени аминоацил тРНК синтетази. Во текот на синтезата на протеините, тРНК молекулите со врзана аминокиселина се транспортираат во рибозомот со помош на посебни протеини наречени фактори на елонгација, кои имаат улога да го помагаат навлегувањето на тРНК во рибозомот, да вршат транслокација (движење) на рибозомот долж иРНК, и со тоа да асистираат во синтезата на полипептидот. Доколку антикодонот на пристигнувачката тРНК молекула одговара на кодонот на иРНК молекулата, тогаш веќе врзаната тРНК молекула внатре во рибозомот ја предава растечката полипептидна верига од нејзиниот 3’ крај на аминокиселината врзана за 3’ крајот на новопристигнатата тРНК молекула, во реакција која е катализирана од рибозомот.

Во структурата на тРНК се јавуваат неколку нуклеотиди кои се хемиски модифицирани, најчесто со метилација и деаминација. Овие невообичаени азотни бази влијаат на интеракцијата на тРНК со рибозомот, а понекогаш се јавуваат и во антикодонот, со што ги менуваат својствата на базното спарување со базите на кодонот. (4)

Структура

Средно cloverleaf структура на tRNAPhe од квасец.
Високото структура на tRNA. ЦЦА опашка во жолта, Акцептор на матичните во пурпурна, Променлива јамка во портокалова, D рака во црвено, Anticodon рака во сина боја со Anticodon во црно, Т арм во зелена боја.

Структурата на тРНК може да се разгледува како примарна (нуклеотидната низа на молекулата), секундарна (дводимензионална структура со базно спарување на комплементарните бази, која наликува на лист од детелина) и терциерна структура(5) (тродимензионална структура на молекулата, која има форма на латинската буква „L“). Дводимензионалната структура, која наликува на лист од детелина, се претвора во тродимензионалната структура, во форма на буквата „L“, по пат на коаксијално насложување на хеликсите, што претставува чест мотив во терциерната структура на многу РНК молекули.

Должината на секој од краците, како и дијаметарот на петелките, кај секоја тРНК молекула, варира од еден до друг организам.[3]

Структурата на тРНК се состои од следните елементи:

  1. 5’-терминална фосфатна група
  2. Акцепторен крак – стебло од 7-9 базни парови (б.п.), кое се формира со базно спарување помеѓу 5’-терминалниот нуклеотид и 3’-терминалниот нуклеотид (кој ја содржи CCA 3’-терминалната „опашка“, која ја врзува аминокиселината). Акцепторниот крак може да содржи базни парови кои не се од типот на Вотсон-Крик.[4]
  3. CCA 3’-терминална „опашка“ – низа составена од базите цитозин-цитозин-аденин, која се наоѓа на 3’ крајот од тРНК молекулата. Аминоацил тРНК синтетазите ковалентно ја врзуваат соодветната аминокиселина за 3’-хидроксилната група на CCA опашката, со што се добива аминоацил-тРНК.(8) Оваа секвенца е критична за распознавање на тРНК од страна на ензимите, а исто така и од рибозомот, во текот на процесот на транслација. (9)(10) Кај некои прокариоти, CCA секвенцата се транскрибира заедно со целата тРНК секвенца, но кај повеќето прокариоти и еукариоти, CCA секвенцата се додава во тек на преработката на тРНК транскриптот, па затоа не е присутна во генот за тРНК.[5]
  4. D крак – стебло од 4-6 б.п. кое завршува со петелка која често го содржи невообичаениот нуклеотид дихидроуридин.
  5. Антикодонски крак – стебло од 5 б.п. кое завршува со петелка, која ја содржи антикодонската секвенца. 
  6. Т крак – стебло од 4-5 б.п. кое ја содржи секвенцата ТΨC, каде Т е невообичаениот нуклеотид риботимидин, а Ψ е невообичаениот нуклеотид псевдоуридин (со невообичаена јаглерод-јаглерод ковалентна врска помеѓу рибозата и базата).
  7. На неколку позиции во тРНК молекулата се среќаваат модифицирани бази, најчесто метилирани од страна на ензими метилтрансферази. Првата база од антикодонот, која се нарекува wobble-позиција (од анг. wobble – се колеба, се двоуми), понекогаш може да биде модифицирана во инозин (нуклеозид кој ја содржи базата хипоксантин, која се добива од аденин), псевдоуридин или лизидин.[6]

Антикодон

Антикодонот е дел од молекулата на тРНК кој се состои од три нуклеотиди кои се комплементарни на трите бази од кодонот на иРНК молекулата. Секоја тРНК молекула содржи специфична антикодонска секвенца од три бази кои можат да формираат три комплементарни базни парови со еден или повеќе кодони кои кодираат за една иста аминокиселина. Некои антикодони можат базно да се спарат со повеќе од еден кодон како резултат на феноменот наречен wobble-базно спарување. Доста често, првиот нуклеотид од антикодонот е ��нозин, кој може водородно да врзе повеќе од една база во соодветната кодонска позиција. (4) Во генетскиот код, често се случува една аминокиселина да биде специфицирана од сите четири можни бази на третата позиција од кодонот, или од две можни бази, од кои едната е пуринска, а другата е пиримидинска; на пример, аминокиселината глицин е кодирана од кодоните: GGU, GGC, GGA и GGG. Освен инозинот, и други модифицирани нуклеотиди можат да се јават на првата позиција од антикодонот (wobble-позицијата), што може да резултира со суптилни промени во генетскиот код, како на пр. кај митохондриите.[7]

Бидејќи постојат 61 сенс кодони во стандарниот генетски код, би се очекувало да во клетката, соодветно, постојат 61 различни типови на тРНК молекули, секоја со одговарачки антикодон за секој од 61-те кодони. Меѓутоа, многу клетки содржат помалку од 61 типови на тРНК молекули, бидејќи wobble-базата е способна водородно да се врзе за неколку (но не сите) кодони, кои специфицираат за одредена аминокиселина. Покажано е дека се потребни минимум 31 типа на тРНК за одвивање на недвосмислена транслација на 61-те сенс кодони; максимумот на различни типови на тРНК молекули, кој досега е откриен, изнесува 41.[8]

Аминоацилација

Аминоацилацијата е процес на додавање на аминоацилна група на одредено соединение. Во случајот на тРНК, аминоацилацијата претставува ковалентно врзување на една од протеиногените аминокиселини за CCA 3’-терминалната „опашка“ од молекулата на тРНК.

Секоја тРНК се аминоацилира со специфична аминокиселина од страна на ензимот аминоацил тРНК синтетаза. Во клетката има 20 различни аминоацил тРНК синтетази (по една за секоја од 20-те протеиногени аминокиселини), иако има повеќе од една тРНК и повеќе од еден антикодон за повеќето аминокиселини. Распознавањето на соодветната тРНК, од страна на аминоацил тРНК синтетазите, не е посредувано само од антикодонскиот крак туку и од акцепторниот крак на тРНК молекулата .(16) Интеракцијата помеѓу тРНК и аминоацил тРНК синтетазата е високо специфична и понекогаш се нарекува „втор генетски код“, бидејќи има критична улога во правилното читање на „првиот“ генетски код и одржувањето на точноста и верноста на протеинската синтеза.(лехнингер) .[9] Реакцијата е:

  1. аминокиселина + АТP → аминоацил-AMP + PPi
  2. аминоацил-AMP + тРНК → аминоацил-тРНК + AMP

Кај некои организми една или повеќе од аминоацил тРНК синтетазите може да недостасува. Во тој случај, за тРНК молекулата бива врзана хемиски сродна аминокиселина, од страна на аминоацил тРНК синтетазата соодветна за таа аминокиселина, а потоа, со употреба на еден или повеќе други ензими, хемиски сродната аминокиселина се модифицира во саканата аминокиселина. На пример, кај бактеријата Helicobacter pylori недостасува глутаминил тРНК синтетазата, па затоа глутамат тРНК синтетазата ја аминоацилира тРНК-глутамин (тРНК-Gln) со хемиски сродната аминокиселина глутаминска киселина. Потоа, ензимот амидотрансфераза ја претвора карбоксилната странична група на глутаминската киселина во амидна група, со што се добива саканата аминокиселина глутамин.

Врзување за рибозомот

Рибозомот има три места за врзување на тРНК, а тие зафаќаат простор и во двете рибозомни подединици. Овие три места се наречени А (аминоацилно), P (пептидилно) и E (излезно) место.(18) Покрај овие три, рибозомот има уште две други места за врзување на тРНК, кои се користат во тек на декодирање на иРНК или во тек на иницијацијата на синтезата на протеини. Тие се наречени Т место (именувано по факторот на елонгација Tu) и I место (иницијационо).(19)(20) По договор, тРНК-врзувачките места се означуваат така што местото на малата рибозомна подединица се пишува прво, а местото на големата рибозомна подединица се пишува второ. На пример, А местото често се пишува како А/А, P местото често се пишува како P/P, а Е местото како Е/Е.(19)

Кога иницијацијата на транслацијата е комплетирана, првата аминоацил-тРНК е лоцирана во P/P местото и е подготвена за отпочнување на процесот на елонгација. Во текот на елонгацијата, тРНК прво се врзува за рибозомот заедно со протеинот наречен фактор на елонгација Tu (EF-Tu) кај бактериите, додека кај археите и еукариотите, тој протеин се нарекува eEF-1. Ова првично место на врзување на тРНК се нарекува А/Т место, каде А местото половично се наоѓа во малата рибозомна подединица, каде е лоцирано и декодирачкото место за иРНК. Декодирачкото место е местото каде се чита кодонот на иРНК во текот на транслацијата. Т местото половично се наоѓа во големата рибозомна подединица, каде протеинот EF-Tu (или eEF-1 кај археите и еукариотите) стапува во интеракција со рибозомот. По завршувањето на декодирањето на иРНК, аминоацил-тРНК се врзува за А/А местото и е подготвена за формирање на пептидна врска меѓу нејзината аминокиселина и аминокиселината на следната тРНК. Пептидил-тРНК, која го пренесува растечкиот полипептид на аминоацил-тРНК врзана за А/А местото, се наоѓа врзана во P/P местото. По формирањето на пептидната врска, тРНК во P/P местото е деацилирана, односно има слободен 3’ крај, а тРНК во А/А местото го носи растечкиот полипептид. За да се овозможи следниот циклус на елонгација, двете врзани тРНК потоа се поместуваат во хибридни А/P и P/Е врзувачки места, пред комплетирање на циклусот, кога се наоѓаат врзани во P/P и Е/Е местата. Откако тРНК молекулите, сместени во А/А и P/P местата, се преместуваат во P/P и Е/Е местата, иРНК молекулата, исто така, се поместува за еден кодон, со што А/Т местото е слободно и подготвено за следниот циклус на декодирање на иРНК. тРНК молекулата која е врзана во Е/Е местото конечно го напушта рибозомот.

Кај бактериите, првото место кое ја врзува аминоацил-тРНК е P/I местото, кое е наречено по факторот на иницијација IF2, кој ја пренесува тРНК молекулата до тоа место. (20) P/I местото сè уште не е откриено во рибозомите на археите и еукариотите.

тРНК гени

Геномите на различни организми имаат различен број на гени за тРНК молекули. На пример, нематодата Caenorhabditis elegans поседува вкупно 29,647 гени(21) во нејзиниот нуклеарен геном, од кои 620 кодираат за тРНК молекули, (22)(23) додека квасната габа Saccharomyces cerevisiae има 275 гени за тРНК во нејзиниот геном.

Хуманиот геном, кој, според најновите процени од 2013 година, поседува околу 20,848 гени за кодирање на протеини (24), има 497 нуклеарни гени за кодирање на цитоплазматски тРНК молекули и околу 324 тРНК-изведени псевдогени (тРНК гени кои повеќе не се функционални).(25) Некои региони во јадрените хромозоми поседуваат секвенци кои се многу слични на секвенците на митохондријалните тРНК гени.(27) Овие гени се дел од јадрената митохондријална ДНК (ДНК која во текот на еволуцијата била трансферирана од митохондријата во јадрото).[10]

Митохондриите на луѓето, како и на сите други еукариоти, поседуваат 22 митохондријални гени за тРНК.[11]




Биогенеза на тРНК

Во еукариотските клетки, тРНК молекулите се транскрибирани од страна на ензимот РНК полимераза III, во облик на пре-тРНК молекули, во јадрото на клетката.[12] РНК полимеразата III препознава две високо сочувани низводни промотерски секвенци: 5' итрагенскиот контролен регион (5'-ICR, D-контролен регион, или А кутија) и 3'-ICR (T-контролен регион или B кутија), во тРНК гените.[13][14] Првиот промотер започнува на +8 кај созреаните тРНК молекули, а вториот промотер се наоѓа 30-60 нуклеотиди низводно од првиот. Терминацијата на транскрипцијата е после секвенца од четири или повеќе тимидини.

Булбус-хеликс-булбус мотив на tRNA intron

Пре-тРНК молекулите подлежат на екстензивна модификација во внатрешноста на јадрото. Некои пре-тРНК молекули содржат интрони кои треба да се сплајсираат, или отсечат, за да се добие функционалната тРНК молекула;[15] кај бактерии овие интрони самите себе се сплајсираат, додека кај еукариотите и археите нив ги сплајсираат тРНК-сплајсирачки ендонуклеази.[16] Еукариотските пре-тРНК молекули содржат булбус-хеликс-булбус (BHB) структурен мотив кој е битен за препознавање и прецизно сплајсирање на интроните од страна на ендонуклеазите.[17] Позицијата и структурата на овој мотив се еволутивно сочувани. 3' CCA опашката се додава од страна на ензимот нуклеотидил трансфераза.[18] Пред тРНК молекулите да бидат транспортирани во цитоплазмата од Los1/Xpo-т протеинот,[19][20] тие биваат аминоацилирани.[21] Редоследот на овие процеси на преработка на пре-тРНК молекулите во созреани тРНК молекули не е ист кај сите организми. На пример, кај квасецот, сплајсирањето не се врши во клеточното јадро туку на цитоплазматската страна од митохондријалната мембрана.[22]

Историја

Постоењето на тРНК првично било замислено од страна на Френсис Крик, кој претпоставувал дека мора да постои некаква транспортна молекула, способна да посредува во „преводот“ на РНК „азбуката“ во протеинската „азбука“. Значајни истражувања за структурата на тРНК биле извршени на почетокот на 1960-тите години, од страна на Алекс Рич и Дон Каспар, двајца истражувачи од Бостон, групата на Жак Фреско при Универзитетот Принстон и група од Обединетото Кралство при Кралскиот колеџ во Лондон. Во 1965 година, Роберт В. Холи, од Универзитетот Корнел, ја објавил примарната структура на тРНК и предложил три секундарни структури. тРНК за првпат била кристализирана во Медисон, Висконсин, од страна на Роберт М. Бок. Структурата на детелина била потврдена со уште неколку други студии во текот на наредните години, за конечно да биде потврдена од студии кои користеле рендгенска кристалографија, во 1974 година. Две независни групи, онаа на Ким Сунг-Ху, работејќи за Александар Рич, и британска група на чело со Арон Клаг, ги објавиле истите кристалографски наоди во рок од една година.[23][24]

Поврзано

Наводи

  1. Plescia, O J; Palczuk, N C; Cora-Figueroa, E; Mukherjee, A; Braun, W (October 1965). „Production of antibodies to soluble RNA (sRNA)“. Proc. Natl. Acad. Sci. USA. 54 (4): 1281–1285. Bibcode:1965PNAS...54.1281P. doi:10.1073/pnas.54.4.1281. PMC 219862. PMID 5219832.
  2. Sharp, Stephen J; Schaack, Jerome; Cooley, Lynn; Burke, Deborah J; Soll, Dieter (1985). „Structure and Transcription of Eukaryotic tRNA Genes“. CRC Critical Reviews in Biochemistry. 19 (2): 107–144. doi:10.3109/10409238509082541. PMID 3905254.
  3. Goodenbour, J. M.; Pan, T. (29 October 2006). „Diversity of tRNA genes in eukaryotes“. Nucleic Acids Research. 34 (21): 6137–6146. doi:10.1093/nar/gkl725. PMC 1693877. PMID 17088292. Посетено на 23 November 2014.
  4. Jahn, Martina; Rogers, M. John; Söll, Dieter (18 July 1991). „Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase“. Nature. 352 (6332): 258–260. Bibcode:1991Natur.352..258J. doi:10.1038/352258a0. PMID 1857423. Посетено на 23 November 2014.
  5. „Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae“. J. Biol. Chem. 265 (27): 16216–16220. September 1990. PMID 2204621.
  6. McCloskey, James A.; Nishimura, Susumu (November 1977). „Modified nucleosides in transfer RNA“. Accounts of Chemical Research. 10 (11): 403–410. doi:10.1021/ar50119a004. Посетено на 23 November 2014.
  7. Suzuki, T; Suzuki, T (June 2014). „A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs“. Nucleic Acids Research. 42 (11): 7346–57. doi:10.1093/nar/gku390. PMC 4066797. PMID 24831542.
  8. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. (2004). Molecular Biology of the Cell. WH Freeman: New York, NY. 5th ed.
  9. „An operational RNA code for amino acids and possible relationship to genetic code“. Proc. Natl. Acad. Sci. U.S.A. 90 (19): 8763–8. 1993. Bibcode:1993PNAS...90.8763S. doi:10.1073/pnas.90.19.8763. PMC 47440. PMID 7692438.
  10. Ramos A.; и др. (2011). „Nuclear Insertions of Mitochondrial Origin: Database Updating and Usefulness in Cancer Studies“. Mitochondrion. 11 (6): 946–53. doi:10.1016/j.mito.2011.08.009. PMID 21907832.
  11. Ibid. p 529.
  12. White RJ (1997). „Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control?“. Trends in Biochemical Sciences. 22 (3): 77–80. doi:10.1016/S0968-0004(96)10067-0. PMID 9066256.
  13. Sharp, Stephen; Dingermann, Theodor; Söll, Dieter (1982). „The minimum intragenic sequences required for promotion of eukaryotic tRNA gene transcription“ (PDF). Nucleic Acids Research. 10 (18): 5393–5406. doi:10.1093/nar/10.18.5393. PMC 320884. PMID 6924209. Посетено на 23 November 2014.
  14. „The expanding RNA polymerase III transcriptome“. Trends Genet. 23 (12): 614–22. December 2007. doi:10.1016/j.tig.2007.09.001. PMID 17977614.
  15. Tocchini-Valentini, Giuseppe D.; Fruscoloni, Paolo; Tocchini-Valentini, Glauco P. (12 November 2009). „Processing of multiple-intron-containing pretRNA“. Proceedings of the National Academy of Sciences. 106 (48): 20246–20251. Bibcode:2009PNAS..10620246T. doi:10.1073/pnas.0911658106. PMC 2787110. PMID 19910528.
  16. „tRNA Splicing“. J Biol Chem. 273 (21): 12685–12688. 1998. doi:10.1074/jbc.273.21.12685. PMID 9582290.
  17. Soma, Akiko (2014). „Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development“. Frontiers in Genetics. 5. doi:10.3389/fgene.2014.00063. ISSN 1664-8021.
  18. Weiner AM (October 2004). „tRNA maturation: RNA polymerization without a nucleic acid template“. Curr. Biol. 14 (20): R883–5. doi:10.1016/j.cub.2004.09.069. PMID 15498478.
  19. Kutay, U. .; Lipowsky, G. .; Izaurralde, E. .; Bischoff, F. .; Schwarzmaier, P. .; Hartmann, E. .; Görlich, D. . (1998). „Identification of a tRNA-Specific Nuclear Export Receptor“. Molecular Cell. 1 (3): 359–369. doi:10.1016/S1097-2765(00)80036-2. PMID 9660920.
  20. Arts, G. J.; Fornerod, M. .; Mattaj, L. W. (1998). „Identification of a nuclear export receptor for tRNA“. Current Biology. 8 (6): 305–314. doi:10.1016/S0960-9822(98)70130-7. PMID 9512417.
  21. Arts, G. -J.; Kuersten, S.; Romby, P.; Ehresmann, B.; Mattaj, I. W. (1998). „The role of exportin-t in selective nuclear export of mature tRNAs“. The EMBO Journal. 17 (24): 7430–7441. doi:10.1093/emboj/17.24.7430. PMC 1171087. PMID 9857198.
  22. Yoshihisa, T.; Yunoki-Esaki, K.; Ohshima, C.; Tanaka, N.; Endo, T. (2003). „Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria“. Molecular Biology of the Cell. 14 (8): 3266–3279. doi:10.1091/mbc.E02-11-0757. PMC 181566. PMID 12925762.
  23. Ladner JE; Jack A; Robertus JD; и др. (November 1975). „Structure of yeast phenylalanine transfer RNA at 2.5 A resolution“. Proc. Natl. Acad. Sci. U.S.A. 72 (11): 4414–8. Bibcode:1975PNAS...72.4414L. doi:10.1073/pnas.72.11.4414. PMC 388732. PMID 1105583.
  24. Kim SH; Quigley GJ; Suddath FL; и др. (1973). „Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain“. Science. 179 (4070): 285–8. Bibcode:1973Sci...179..285K. doi:10.1126/science.179.4070.285. PMID 4566654.

Надворешни врски