Anhemitonic scale
Musicology commonly classifies scales as either hemitonic or anhemitonic. Hemitonic scales contain one or more semitones, while anhemitonic scales do not contain semitones. For example, in traditional Japanese music, the anhemitonic yo scale is contrasted with the hemitonic in scale.[4] The simplest and most commonly used scale in the world is the atritonic anhemitonic "major" pentatonic scale. The whole tone scale is also anhemitonic.
A special subclass of the hemitonic scales is the cohemitonic scales.[6] Cohemitonic scales contain two or more semitones (making them hemitonic) such that two or more of the semitones appear consecutively in scale order. For example, the Hungarian minor scale in C includes F♯, G, and A♭ in that order, with a semitone between F♯ and G, and then a semitone between G and A♭.
Ancohemitonic scales, in contrast, either contain no semitones (and thus are anhemitonic), or contain semitones (being hemitonic) where none of the semitones appear consecutively in scale order.[7][failed verification] Some authors, however, do not include anhemitonic scales in their definition of ancohemitonic scales. Examples of ancohemitonic scales are numerous, as ancohemitonia is favored over cohemitonia in the world's musics: diatonic scale, melodic major/melodic minor, harmonic major scale, harmonic minor scale, Hungarian major scale, Romanian major scale, and the so-called octatonic scale.
Hemitonia is also quantified by the number of semitones present. Unhemitonic scales have only one semitone; dihemitonic scales have 2 semitones; trihemitonic scales have 3 semitones, etc. In the same way that an anhemitonic scale is less dissonant than a hemitonic scale, an anhemitonic scale is less dissonant than a dihemitonic scale.
The qualification of cohemitonia versus ancohemitonia combines with the cardinality of semitones, giving terms like: dicohemitonic, triancohemitonic, and so forth. An ancohemitonic scale is less dissonant than a cohemitonic scale, the count of their semitones being equal. In general, the number of semitones is more important to the perception of dissonance than the adjacency (or lack thereof) of any pair of them. Additional adjacency between semitones (once adjacency is present) does not necessarily increase the dissonance, the count of semitones again being equal.[8]
Related to these semitone classifications are tritonic and atritonic scales. Tritonic scales contain one or more tritones, while atritonic scales do not contain tritones. A special monotonic relationship exists between semitones and tritones as scales are built by projection, q.v. below.
The harmonic relationship of all these categories comes from the perception that semitones and tritones are the severest of dissonances, and that avoiding them is often desirable. The most-used scales across the planet are anhemitonic. Of the remaining hemitonic scales, the ones most used are ancohemitonic.
Quantification of hemitonia and its relationship to ancohemitonia
[edit]Most of the world's music is anhemitonic, perhaps 90%.[9] Of that other hemitonic portion, perhaps 90% is unhemitonic, predominating in chords of only 1 semitone, all of which are ancohemitonic by definition.[9] Of the remaining 10%, perhaps 90% are dihemitonic, predominating in chords of no more than 2 semitones. The same applies to chords of 3 semitones.[10] In both later cases, however, there is a distinct preference for ancohemitonia, as the lack of adjacency of any two semitones goes a long way towards softening the increasing dissonance.
The following table plots sonority size (downwards on the left) against semitone count (to the right) plus the quality of ancohemitonia (denoted with letter A) versus cohemitonia (denoted with letter C). In general, ancohemitonic combinations are fewer for a given chord or scale size, but used much more frequently so that their names are well known.
Sonority | Semitone counts | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Notes | Count | 0 | 1 | 2 | 2A | 2C | 3 | 3A | 3C | >=4 | >=4A | >=4C |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 6 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 19 | 10 | 8 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 43 | 10 | 21 | 11 | 4 | 7 | 1 | 0 | 1 | 0 | 0 | 0 |
5 | 66 | 3 | 20 | 30 | 15 | 15 | 12 | 0 | 12 | 1 | 0 | 1 |
6 | 80 | 1 | 5 | 26 | 16 | 10 | 34 | 4 | 30 | 14 | 0 | 14 |
7 | 66 | 0 | 0 | 3 | 2 | 1 | 20 | 4 | 16 | 43 | 0 | 43 |
8 | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | 1 | 42 |
9 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 19 |
10 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 6 |
11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
TOTALS | 351 | 30 | 55 | 71 | 37 | 34 | 67 | 8 | 59 | 128 | 1 | 127 |
Column "0" represents the most commonly used chords.,[8] avoiding intervals of M7 and chromatic 9ths and such combinations of 4th, chromatic 5ths, and 6th to produce semitones. Column 1 represents chords that barely use the harmonic degrees that column "0" avoids. Column 2, however, represents sounds far more intractable.[8]
Column 0, row 5 are the full but pleasant chords: 9th, 6/9, and 9alt5 with no 7.[11] Column "0", row "6", is the unique whole tone scale.[12][verification needed] Column "2A", row "7", a local minimum, refers to the diatonic scale and melodic major/melodic minor scales.[13][verification needed] Ancohemitonia, inter alii, probably makes these scales popular. Column "2C", row "7", another local minimum, refers to the Neapolitan major scale, which is cohemitonic and somewhat less common but still popular enough to bear a name.[14][verification needed] Column "3A", row "7", another local minimum, represents the harmonic major scale and its involution harmonic minor scale, and the Hungarian major scale and its involution Romanian major scale.[15][verification needed] Column "3A", row "6", are the hexatonic analogs to these four familiar scales,[16][verification needed] one of which being the Augmented scale,[17][verification needed] and another the analog of the Octatonic scale - which itself appears, alone and solitary, at Column ">=4A". row "8".[18][=4A row 8. (January 2020)">verification needed] Column "2A", row "4", another minimum, represents a few frankly dissonant, yet strangely resonant harmonic combinations: mM9 with no 5, 11♭9, dom13♭9, and M7♯11.[11]
Note, too, that in the highest cardinality row for each column before the terminal zeros begin, the sonority counts are small, except for row "7" and the "3" columns of all sorts. This explosion of hemitonic possibility associated with note cardinality 7 (and above) possibly marks the lower bound for the entity called "scale" (in contrast to "chord").
As shown in the table, anhemitonia is a property of the domain of note sets cardinality 2 through 6, while ancohemitonia is a property of the domain of note sets cardinality 4 through 8 (3 through 8 for improper ancohemitonia including unhemitonia as well). This places anhemitonia generally in the range of "chords" and ancohemitonia generally in the range of "scales".
Example: hemitonia and tritonia of the perfect-fifth projection
[edit]The interrelationship of semitones, tritones, and increasing note count can be demonstrated by taking five consecutive pitches from the circle of fifths;[19] starting on C, these are C, G, D, A, and E. Transposing the pitches to fit into one octave rearranges the pitches into the major pentatonic scale: C, D, E, G, A. This scale is anhemitonic, having no semitones; it is atritonic, having no tritones.
In addition, this is the maximal number of notes taken consecutively from the circle of fifths for which is it still possible to avoid a semitone.[20]
Adding another note from the circle of fifths gives the major hexatonic scale: C D E G A B. This scale is hemitonic, having a semitone between B and C; it is atritonic, having no tritones. In addition, this is the maximal number of notes taken consecutively from the circle of fifths for which is it still possible to avoid a tritone.[21][failed verification]
Adding still another note from the circle of fifths gives the major heptatonic scale: C D E F G A B (when the fifth is added from below the tonic). This scale is strictly ancohemitonic, having 2 semitones but not consecutively; it is tritonic, having a tritone between F and B. Past this point in the projection series, no new intervals are added to the Interval vector analysis of the scale,[22] but cohemitonia results.
Adding still another note from the circle of fifths gives the major octatonic scale: C D E F F♯ G A B (when the fifth is added from above the top note in the series--B in this case). This scale is cohemitonic, having 3 semitones together at E F F♯ G, and tritonic as well.[22][failed verification]
Similar behavior is seen across all scales generally, that more notes in a scale tend cumulatively to add dissonant intervals (specifically: hemitonia and tritonia in no particular order) and cohemitonia not already present. While also true that more notes in a scale tend to allow more and varied intervals in the interval vector, there might be said to be a point of diminishing returns, when qualified against the also increasing dissonance, hemitonia, tritonia and cohemitonia.[22] It is near these points where most popular scales lie.
Cohemitonic and hemitonic scales
[edit]Though less used than ancohemitonic scales, the cohemitonic scales have an interesting property. The sequence of two (or more) consecutive halfsteps in a scale presents the opportunity to "split" the scale by placing the tonic note of the scale on the middle note of the halfstep span. This allows a leading tone from below resolving upwards, as well as a descending flat-supertonic upper neighbor, both converging on the tonic. The split turns a weakness - dissonance of cohemitonia - to a strength: contrapuntal convergence on the tonic. It is very common that a cohemitonic (or even hemitonic) scale (e.g.: Hungarian minor { C D E♭ F♯ G A♭ B }) be displaced preferentially to a mode where the halfstep span is split (e.cont.: Double harmonic scale { G A♭ B C D E♭ F♯ }), and by which name we more commonly know the same circular series of intervals.[23] Cohemitonic scales with multiple halfstep spans present the additional possibility of modulating between tonics each furnished with both upper and lower neighbors.
Modes of heptatonic scales and the key signature system
[edit]Western music's system of key signature is based upon the assumption of a heptatonic scale of 7 notes, such that there are never more than 7 accidentals present in a valid key signature. The global preference for anhemitonic scales combines with this basis to highlight the 6 ancohemitonic heptatonic scales,[24][verification needed] most of which are common in romantic music, and of which most Romantic music is composed:
- Diatonic scale
- Melodic major/melodic minor
- Harmonic major scale
- Harmonic minor scale
- Hungarian major scale
- Romanian major scale
These cohemitonic scales are less common:
- Double harmonic major scale
- Neapolitan major scale
- Neapolitan minor scale
- Ionian ♭5 scale
- Persian scale
- Locrian ♯7 scale
Adhering to the definition of heptatonic scales, these all possess 7 modes each, and are suitable for use in modal mutation.[25] They appear in the table above in Row "7", Columns "2A" and "3A".
Table of key signatures
[edit]The following lists the key signatures for all possible untransposed modes of the aforementioned heptatonic scales using the note C as the tonic.
Base scale | Accidentals | Mode name |
---|---|---|
Diatonic | F♯ | Lydian |
Diatonic | Ionian | |
Diatonic | B♭ | Mixolydian |
Diatonic | B♭, E♭ | Dorian |
Diatonic | B♭, E♭, A♭ | Aeolian |
Diatonic | B♭, E♭, A♭, D♭ | Phrygian |
Diatonic | B♭, E♭, A♭, D♭, G♭ | Locrian |
Base scale | Accidentals | Mode name |
Melodic | F♯, G♯ | Lydian Augmented |
Melodic | F♯, B♭ | Acoustic, Lydian Dominant |
Melodic | E♭ | Melodic minor (ascending), Jazz minor |
Melodic | B♭, A♭ | Melodic Major (descending), Aeolian Dominant, Mixolydian ♭6 |
Melodic | B♭, E♭, D♭ | Dorian ♭2 |
Melodic | B♭, E♭, A♭, G♭ | Half Diminished, Locrian ♮2, Semilocrian |
Melodic | B♭, E♭, A♭, D♭, G♭, F♭ | Superlocrian, Altered |
Base scale | Accidentals | Mode name |
Harmonic major | F♯, G♯, D♯ | Lydian Augmented ♯2 |
Harmonic major | F♯, E♭ | Lydian Diminished |
Harmonic major | A♭ | Harmonic Major |
Harmonic major | B♭, D♭ | Phrygian Dominant ♮6 |
Harmonic major | B♭, E♭, G♭ | Diminished Dorian |
Harmonic major | B♭, E♭, A♭, D♭, F♭ | Superphrygian |
Harmonic major | E♭, A♭, D♭, G♭, B | Locrian Diminished |
Base scale | Accidentals | Mode name |
Harmonic minor | F♯, D♯ | Lydian ♯2 |
Harmonic minor | G♯ | Ionian Augmented |
Harmonic minor | F♯, B♭, E♭ | Ukrainian Dorian |
Harmonic minor | E♭, A♭ | Harmonic Minor |
Harmonic minor | B♭, A♭, D♭ | Phrygian Dominant |
Harmonic minor | B♭, E♭, D♭, G♭ | Locrian ♮6 |
Harmonic minor | E♭, A♭, D♭, G♭, F♭, B | Ultralocrian |
Base scale | Accidentals | Mode name |
Hungarian major | F♯, G♯, E♯ | Lydian Augmented ♯3 |
Hungarian major | F♯, D♯, B♭ | Hungarian Major |
Hungarian major | G♯, E♭ | Jazz Minor ♯5 |
Hungarian major | F♯, B♭, E♭, D♭ | Ukrainian Dorian ♭9 |
Hungarian major | E♭, A♭, G♭ | Harmonic Minor ♭5 |
Hungarian major | B♭, E♭, D♭, G♭, F♭ | Altered Dominant ♮6 |
Hungarian major | E♭, D♭, G♭, F♭, B, A | Ultralocrian 6 |
Base scale | Accidentals | Mode name |
Romanian major | F♯, G♯, D♯, E♯ | Super Lydian Augmented ♮6 |
Romanian major | F♯, G♯, E♭ | Lydian Augmented ♭3 |
Romanian major | F♯, B♭, D♭ | Romanian Major |
Romanian major | E♭, G♭ | Jazz Minor ♭5 |
Romanian major | B♭, E♭, D♭, F♭ | Dorian ♭9 ♭11 |
Romanian major | E♭, A♭, G♭, B | Semilocrian 7 |
Romanian major | B♭, E♭, D♭, G♭, F♭, A | Altered Dominant 6 |
Base scale | Accidentals | Mode name |
Hungarian minor | F♯, D♯, A♯ | Lydian ♯2 ♯6 |
Hungarian minor | G♯, D♯ | Ionian Augmented ♯2 |
Hungarian minor | F♯, E♭, A♭ | Hungarian Minor |
Hungarian minor | A♭, D♭ | Double harmonic |
Hungarian minor | B♭, D♭, G♭ | Oriental |
Hungarian minor | E♭, A♭, D♭, F♭, B | Ultraphrygian |
Hungarian minor | A♭, D♭, G♭, B, E | Locrian Diminished 3 |
Base scale | Accidentals | Mode name |
Neapolitan major | F♯, G♯, A♯ | Leading Whole-Tone |
Neapolitan major | F♯, G♯, B♭ | Lydian Augmented Dominant |
Neapolitan major | F♯, B♭, A♭ | Lydian Minor |
Neapolitan major | E♭, D♭ | Neapolitan Major |
Neapolitan major | B♭, A♭, G♭ | Locrian Major |
Neapolitan major | B♭, E♭, A♭, G♭, F♭ | Altered ♮2 |
Neapolitan major | B♭, A♭, D♭, G♭, F♭, E | Altered 3 |
Base scale | Accidentals | Mode name |
Neapolitan minor | F♯, A♯ | Lydian ♯6 |
Neapolitan minor | D♯ | Ionian ♯2 |
Neapolitan minor | G♯, B♭ | Mixolydian Augmented |
Neapolitan minor | F♯, B♭, E♭, A♭ | Hungarian Gypsy |
Neapolitan minor | E♭, A♭, D♭ | Neapolitan Minor |
Neapolitan minor | B♭, A♭, D♭, G♭ | Locrian Dominant |
Neapolitan minor | A♭, D♭, G♭, F♭, B, E | Ultralocrian 3 |
Base scale | Accidentals | Mode name |
Ionian ♭5 | F♯, G♯, D♯, A♯, E♯ | Super Lydian Augmented |
Ionian ♭5 | F♯, D♭ | Lydian ♭2 |
Ionian ♭5 | G♭ | Ionian ♭5 |
Ionian ♭5 | B♭, E♭, F♭ | Dorian ♭4 |
Ionian ♭5 | E♭, A♭, B | Aeolian 7 |
Ionian ♭5 | B♭, A♭, D♭, E | Phrygian 3 |
Ionian ♭5 | B♭, E♭, D♭, G♭, A | Locrian 6 |
Base scale | Accidentals | Mode name |
Persian | F♯, A♯, E♯ | Lydian ♯6 ♯3 |
Persian | D♯, A♯ | Ionian ♯2 ♯6 |
Persian | G♯, D♯, B♭ | Mixolydian Augmented ♯2 |
Persian | F♯, E♭, A♭, D♭ | Neapolitan Minor ♯4 |
Persian | A♭, D♭, G♭ | Persian |
Persian | A♭, D♭, F♭, B, E | Ultraphrygian 3 |
Persian | D♭, G♭, B, E, A | Altered Altered ♮4 |
Base scale | Accidentals | Mode name |
Locrian ♮7 | F♯, E♯ | Lydian ♯3 |
Locrian ♮7 | A♯ | Ionian ♯6 |
Locrian ♮7 | D♯, B♭ | Mixolydian ♯2 |
Locrian ♮7 | G♯, B♭, E♭ | Dorian Augmented |
Locrian ♮7 | F♯, B♭, E♭, A♭, D♭ | Phrygian ♯4 |
Locrian ♮7 | E♭, A♭, D♭, G♭ | Locrian ♮7 |
Locrian ♮7 | D♭, G♭, F♭, B, E, A | Altered Altered |
Common citation in theories
[edit]- Dimitri Tymoczko, in A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (ISBN 978-0195336672), includes hemitonia in calculation formulas for contrapuntal smoothness and harmonic force transfer.
- Brett Willmott, in Mel Bays Complete Book of Harmony Theory and Voicing (ISBN 978-1562229948), restricts the scope of his guitar chord voicing to ancohemitonic tetrads.
- Michael Keith, in From Polychords to Polya : Adventures in Musical Combinatorics (ISBN 978-0963009708), draws his list of basic harmonies as anhemitonic sonorities.
Miscellanea
[edit]- All heptatonic (except for 7EDO temperament, so called "neutral scale", used in gamelan music and some folk musical styles of Angola) and larger scales are hemitonic (ditonic or better) and tritonic.[24][verification needed] All pitch class sets of seven notes contain 1-3 tritones and 3-6 semitones, as can be seen in their interval vectors on List of set classes.
- All octatonic scales save one ("the octatonic" or Diminished scale) are cohemitonic.[24][verification needed]
- All enneatonic and larger scales are cohemitonic.[24][verification needed]
- All sonorities with 5 or more semitones are cohemitonic.[24][verification needed]
- The set complement of a cohemitonic scale is often an ancohemitonic scale, and vice versa.
- Unhemitonic scales never have more than 6 notes, and are always ancohemitonic.[verification needed]
- Dihemitonic and trihemitonic scales never have more than 7 notes.[24][verification needed]
- Tetrahemitonic and pentahemitonic scales never have more than 8 notes.[24][verification needed]
- Hexahemitonic and heptahemitonic scales never have more than 9 notes.[24][verification needed]
- Octahemitonic and enneahemitonic scales never have more than 10 notes.[24][verification needed]
- There is no 12ET scale with exactly 11 halfsteps.[24][verification needed]
References
[edit]- ^ Susan Miyo Asai (1999). Nōmai Dance Drama, p. 126. ISBN 978-0-313-30698-3.
- ^ Minoru Miki, Marty Regan, Philip Flavin (2008). Composing for Japanese instruments, p. 2. ISBN 978-1-58046-273-0.
- ^ Titon, Jeff Todd (1996). Worlds of Music: An Introduction to the Music of the World's Peoples, p. 373. ISBN 0-02-872612-X.
- ^ Anon. (2001) "Ditonus", The New Grove Dictionary of Music and Musicians, second edition, edited by Stanley Sadie and John Tyrrell. London: Macmillan Publishers; Bence Szabolcsi (1943), "Five-Tone Scales and Civilization", Acta Musicologica 15, Fasc. 1/4 (January–December): pp. 24–34, citation on p. 25.
- ^ Kahan, Sylvia (2009). In Search of New Scales, p. 39. ISBN 978-1-58046-305-8. Cites Liszt. Des Bohémians, p. 301.
- ^ Christ, William (1966). Materials and Structure of Music, v.1, p. 39. Englewood Cliffs: Prentice–Hall. LOC 66-14354.
- ^ Tymoczko, Dmitri (1997). "The Consecutive-Semitone Constraint on Scalar Structure: A Link between Impressionism and Jazz", Intégral, v.11, (1997), p. 135-179.
- ^ a b c Keith, Michael. 1991. From Polychords to Polya : Adventures in Musical Combinatorics, p. 45. Princeton: Vinculum Press. ISBN 978-0963009708.
- ^ a b Keith, Michael. 1991. From Polychords to Polya : Adventures in Musical Combinatorics, p. 43. Princeton: Vinculum Press. ISBN 978-0963009708.
- ^ Keith, Michael. 1991. From Polychords to Polya : Adventures in Musical Combinatorics, p. 48-49. Princeton: Vinculum Press. ISBN 978-0963009708.
- ^ a b Wilmott, Brett. (1994) Mel Bays Complete Book of Harmony Theory and Voicing, p.210. Pacific, Missouri: Mel Bay. ISBN 978-1562229948.
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.367. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.362-363. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.363. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.364. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.369. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.368. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.360. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ Cooper, Paul. 1973. Perspectives in Music Theory: An Historical-Analytical Approach, p. 18. New York: Dodd, Mead. ISBN 0-396-06752-2.
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.29. New York: Appleton-Century-Crofts. LOC 58-8138. "The hexad [consisting of perfect fifths] adds B, C-G-D-A-E-B, or melodically, producing C-D-E-F-G-A-B, its components being five perfect fifths, four major seconds, three minor thirds, two major thirds, and--for the first time--the dissonant minor second (or major seventh), p5m2n3s4d."
- ^ Hanson, Howard. (1960) Harmonic Materials of Modern Music, p.40. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ a b c Hanson, Howard. (1960) Harmonic Materials of Modern Music, p. 33. New York: Appleton-Century-Crofts. LOC 58-8138. "When the projection [of the perfect fifth] is carried beyond seven tones, no new intervals can be added." "On the other hand, as sonorities are projected beyond the six-tone series they tend to lose their individuality. All seven-tone series, for example, contain all of the six basic intervals, and difference in their proportion decreases as additional tones are added....Such patterns tend to lose their identity, producing a monochromatic effect with its accompanying lack of the essential element of contrast."
- ^ Schillinger, Joseph. (1941) The Schillinger System of Musical Composition, v.1, p. 113ff. New York: Carl Fischer. ISBN 0306775212.
- ^ a b c d e f g h i j Hanson, Howard. (1960) Harmonic Materials of Modern Music, p. 362ff. New York: Appleton-Century-Crofts. LOC 58-8138.
- ^ Christ, William (1966). Materials and Structure of Music, v.1, p. 45. Englewood Cliffs: Prentice-Hall. LOC 66-14354.