Jump to content

65537-անկյուն

Վիքիպեդիայից՝ ազատ հանրագիտարանից
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Կանոնավոր 65537-անկյուն

65537-անկյուն (վաթսունհինգհազարհինգհարյուրերեսունյոթանկյուն), երկրաչափական պատկեր, բազմանկյուն, որն ունի 65 537 անկյուն և 65 537 կողմ։ Կենտրոնական անկյան փոքրության պատճառով կանոնավոր 65537-անկյան գրաֆիկական պատկերը գրեթե չի տարբերվում շրջանագծից։ Այս կանոնավոր բազմանկյան ներքին անկյունների գումարը 23592600° է։

Կանոնավոր 65537-անկյուն

Կանոնավոր 65537-անկյան մակերեսը հավասար է. (որտեղ t = եզրագծի երկարությանը)

Կանոնավոր 65537-անկյունը տեսողականորեն չի տարբերվում շրջանագծից, և դրա պարագծի տարբերությունը արտագծյալ շրջանագծից կազմում է մոտավորապես միլիարդի 15 մաս։

Կառուցում

65537-անկյան կառուցման առաջին քայլերը

Կանոնավոր 65537-անկյան տարբերակիչ առանձնահատկությունն այն փաստն է, որ այն կարելի է կառուցել՝ օգտագործելով միայն կարկին և քանոն։ 65 537 թիվը Ֆերմայի թվերից մեզ հայտնի ամենամեծ պարզ թիվն է.

Կառլ Գաուսը 1796 թվականին ապացուցեց, որ կանոնավոր n-անկյունը կարելի է կառուցել կարկինի և քանոնի օգնությամբ, եթե n կենտ թվով պարզ բաժանարարները Ֆերմայի տարբեր թվեր են։ 1836 թվականին Պ. Վանցելն ապացուցեց, որ այլ կանոնավոր բազմանկյուններ, որոնք կարելի է կառուցել քանոնով և կարկինով, գոյություն չունեն։ Այժմ այդ հաստատումը հայտնի է Գաուս-Վանցելի թեորեմ անունով։

1894 թվականին Յոհան Գուստավ Հերմեսը (գերմ.՝ Johann Gustav Hermes, 1846—1912) ավելի քան տասնամյա հետազոտություններից հետո գտավ կանոնավոր 65537-անկյան կառուցման եղանակը և նկարագրեց դա իր 200 էջանոց գրվածքի մեջ[1] (ձեռագրի բնօրինակը գտնվում և պահպանվում է Գյոթինգենի համալսարանի գրադարանում)։

Համամասնություն

Անկյուններ

Կենտրոնական անկյունը հավասար է ։

Ներքին անկյունը հավասար է ։

Ծանոթագրություններ

  1. Johann Gustav Hermes (1894). «Über die Teilung des Kreises in 65537 gleiche Teile». Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Göttingen. 3: 170–186.(գերմ.)

Գրականություն

  • Weisstein, Eric W., "65537-gon", MathWorld.
  • Robert Dixon Mathographics. New York: Dover, p. 53, 1991.
  • Benjamin Bold, Famous Problems of Geometry and How to Solve Them New York: Dover, p. 70, 1982. ISBN 978-0486242972
  • H. S. M. Coxeter Introduction to Geometry, 2nd ed. New York: Wiley, 1969. Chapter 2, Regular polygons
  • Leonard Eugene Dickson Constructions with Ruler and Compasses; Regular Polygons Ch. 8 in Monographs on Topics of Modern Mathematics
  • Relevant to the Elementary Field (Ed. J. W. A. Young). New York: Dover, pp. 352–386, 1955.

Արտաքին հղումներ