Hey Kids Comics Wiki
Hey Kids Comics Wiki
Advertisement

A cyborg, short for "Cybernetic organism", is a being with both organic and mechanical parts. See for example biomaterials and bioelectronics. The term was coined in 1960 when Manfred Clynes and Nathan S. Kline used it in an article about the advantages of self-regulating human-machine systems in outer space.[1] D. S. Halacy's Cyborg: Evolution of the Superman in 1965 featured an introduction which spoke of a "new frontier" that was "not merely space, but more profoundly the relationship between 'inner space' to 'outer space' – a bridge...between mind and matter."[2]

The beginning of Cyborg creation began when HCI (human-computer interaction) began. There is a clear distinction between the human and computerized technology in HCI, which differs from cyborgs in that cyborgs act out human functions.

The term cyborg is often applied to an organism that has enhanced abilities due to technology,[3] though this perhaps oversimplifies the necessity of feedback for regulating the subsystem. The more strict definition of Cyborg is almost always considered as increasing or enhancing normal capabilities. While cyborgs are commonly thought of as mammals, they might also conceivably be any kind of organism and the term "Cybernetic organism" has been applied to networks, such as road systems, corporations and governments, which have been classed as such. The term can also apply to micro-organisms which are modified to perform at higher levels than their unmodified counterparts. It is hypothesized that cyborg technology will form a part of the future human evolution.

Fictional cyborgs are portrayed as a synthesis of organic and synthetic parts, and frequently pose the question of difference between human and machine as one concerned with morality, free will, and empathy. Fictional cyborgs may be represented as visibly mechanical (e.g. the Cybermen in the Doctor Who franchise or The Borg from Star Trek or Darth Vader from Star Wars); or as almost indistinguishable from humans (e.g. the Terminators from the Terminator films, the "Human" Cylons from the re-imagining of Battlestar Galactica etc.) The 1970s television series The Six Million Dollar Man featured one of the most famous fictional cyborgs, referred to as a bionic man; the series was based upon a novel by Martin Caidin titled Cyborg. Cyborgs in fiction often play up a human contempt for over-dependence on technology, particularly when used for war, and when used in ways that seem to threaten free will. Cyborgs are also often portrayed with physical or mental abilities far exceeding a human counterpart (military forms may have inbuilt weapons, among other things).

Overview[]

According to some definitions of the term, the metaphysical and physical attachments humanity has with even the most basic technologies have already made them cyborgs.[4] In a typical example, a human fitted with a heart pacemaker might be considered a cyborg, since these mechanical parts enhance the body's "natural" mechanisms through synthetic feedback mechanisms. Some theorists cite such modifications as contact lenses, hearing aids, or intraocular lenses as examples of fitting humans with technology to enhance their biological capabilities; however, these modifications are as cybernetic as a pen or a wooden leg. Implants, especially cochlear implants, that combine mechanical modification with any kind of feedback response are more accurately cyborg enhancements.

The term is also used to address human-Technology mixtures in the abstract. This includes not only commonly used pieces of technology such as phones, computers, the Internet, etc. but also artifacts that may not popularly be considered technology; for example, pen and paper, and speech and language. Augmented with these technologies, and connected in communication with people in other times and places, a person becomes capable of much more than they were before. This is like computers, which gain power by using Internet protocols to connect with other computers. Cybernetic technologies include highways, pipes, electrical wiring, buildings, electrical plants, libraries, and other infrastructure that we hardly notice, but which are critical parts of the cybernetics that we work within.

Bruce Sterling in his universe of Shaper/Mechanist suggested an idea of alternative cyborg called Lobster, which is made not by using internal implants, but by using an external shell (e.g. a Powered Exoskeleton).[5] Unlike human cyborgs that appear human externally while being synthetic internally, a Lobster looks inhuman externally but contains a human internally. The computer game Deus Ex: Invisible War prominently featured cyborgs called Omar, where "Omar" is a Russian translation of the word "Lobster" (since the Omar are of Russian origin in the game).

Origins[]

The concept of a man-machine mixture was widespread in science fiction before World War II. As early as 1843, Edgar Allan Poe described a man with extensive prostheses in the short story "The Man That Was Used Up". In 1908, Jean de la Hire introduced Nyctalope (perhaps the first true superhero was also the first literary cyborg) in the novel L'Homme Qui Peut Vivre Dans L'eau (The Man Who Can Live in the Water). Edmond Hamilton presented space explorers with a mixture of organic and machine parts in his novel The Comet Doom in 1928. He later featured the talking, living brain of an old scientist, Simon Wright, floating around in a transparent case, in all the adventures of his famous hero, Captain Future. He uses the term explicitly in the 1962 short story, "After a Judgment Day," to describe the "mechanical analogs" called "Charlies," explaining that "[c]yborgs, they had been called from the first one in the 1960s...cybernetic organisms." In the short story "No Woman Born" in 1944, C. L. Moore wrote of Deirdre, a dancer, whose body was burned completely and whose brain was placed in a faceless but beautiful and supple mechanical body.

The term was coined by Manfred E. Clynes and Nathan S. Kline in 1960 to refer to their conception of an enhanced human being who could survive in extraterrestrial environments:

For the exogenously extended organizational complex functioning as an integrated homeostatic system unconsciously, we propose the term 'Cyborg'. - Manfred E. Clynes and Nathan S. Kline[6]


Their concept was the outcome of thinking about the need for an intimate relationship between human and machine as the new frontier of space exploration was beginning to take place. A designer of physiological instrumentation and electronic data-processing systems, Clynes was the chief research scientist in the Dynamic Simulation Laboratory at Rockland State Hospital in New York.

The term first appears in print five months earlier when The New York Times reported on the Psychophysiological Aspects of Space Flight Symposium where Clynes and Kline first presented their paper.

A cyborg is essentially a man-machine system in which the control mechanisms of the human portion are modified externally by drugs or regulatory devices so that the being can live in an environment different from the normal one.[7]


A book titled Cyborg: Digital Destiny and Human Possibility in the Age of the Wearable computer was published by Doubleday in 2001.[8] Some of the ideas in the book were incorporated into the 35mm motion picture film Cyberman.

Cyborg tissues in engineering[]

Cyborgs tissues structured with carbon nanotubes and plant or fungal cells have been used in artificial tissue engineering to produce new materials for mechanical and electrical uses. The work was presented by Di Giacomo and Maresca at MRS 2013 Spring conference on Apr, 3rd, talk number SS4.04.[9] The cyborg obtained is inexpensive, light and has unique mechanical properties. It can also be shaped in desired forms. Cells combined with MWCNTs co-precipitated as a specific aggregate of cells and nanotubes that formed a viscous material. Likewise, dried cells still acted as a stable matrix for the MWCNT network. When observed by optical microscopy the material resembled an artificial “tissue” composed of highly packed cells. The effect of cell drying is manifested by their “ghost cell” appearance. A rather specific physical interaction between MWCNTs and cells was observed by electron microscopy suggesting that the cell wall (the most outer part of fungal and plant cells) may play a major active role in establishing a CNTs network and its stabilization. This novel material can be used in a wide range of electronic applications from heating to sensing and has the potential to open important new avenues to be exploited in electromagnetic shielding for radio frequency electronics and aerospace technology. In particular using Candida albicans cells cyborg tissue materials with temperature sensing properties have been reported. [10]

Individual cyborgs[]

[[wikipedia:File:Neil Harbisson cyborgist.jpg|thumb|right|Neil Harbisson cyborg activist and president of the Cyborg Foundation.[11]|]] thumb|Jens Naumann, a man with acquired blindness, being interviewed about his vision BCI on CBS's The Early Show Generally, the term "cyborg" is used to refer to a human with bionic, or robotic, implants.

In current prosthetic applications, the C-Leg system developed by Otto Bock HealthCare is used to replace a human leg that has been amputated because of injury or illness. The use of sensors in the artificial C-Leg aids in walking significantly by attempting to replicate the user's natural gait, as it would be prior to amputation.[12] Prostheses like the C-Leg and the more advanced iLimb are considered by some to be the first real steps towards the next generation of real-world cyborg applications. Additionally cochlear implants and magnetic implants which provide people with a sense that they would not otherwise have had can additionally be thought of as creating cyborgs.

In vision science, direct brain implants have been used to treat non-congenital (acquired) blindness. One of the first scientists to come up with a working brain interface to restore sight was private researcher William Dobelle. Dobelle's first prototype was implanted into "Jerry", a man blinded in adulthood, in 1978. A single-array BCI containing 68 electrodes was implanted onto Jerry's visual cortex and succeeded in producing phosphenes, the sensation of seeing light. The system included cameras mounted on glasses to send signals to the implant. Initially, the implant allowed Jerry to see shades of grey in a limited field of vision at a low frame-rate. This also required him to be hooked up to a two-ton mainframe, but shrinking electronics and faster computers made his artificial eye more portable and now enable him to perform simple tasks unassisted.[13]

In 1997, Philip Kennedy, a scientist and physician designed the world's first human cyborg named Johnny Ray. Ray was a Vietnam veteran in Georgia who suffered a stroke. Unfortunately, Ray's body, as doctor's called it, was "locked in". Ray wanted his old life back so he agreed to Kennedy's experiment. Kennedy embedded a Neurotrophic Electrode near the part of Ray's brain so that Ray would be able to have some movement back in his body. The surgery went successfully, but in 2002, Johnny Ray passed away.[14]

In 2002, Canadian Jens Naumann, also blinded in adulthood, became the first in a series of 16 paying patients to receive Dobelle's second generation implant, marking one of the earliest commercial uses of BCIs. The second generation device used a more sophisticated implant enabling better mapping of phosphenes into coherent vision. Phosphenes are spread out across the visual field in what researchers call the starry-night effect. Immediately after his implant, Jens was able to use his imperfectly restored vision to drive slowly around the parking area of the research institute.[15]

In 2002, under the heading Project Cyborg, a British scientist, Kevin Warwick, had an array of 100 electrodes fired into his nervous system in order to link his nervous system into the Internet. With this in place he successfully carried out a series of experiments including extending his nervous system over the Internet to control a robotic hand, a loudspeaker and amplifier. This is a form of extended sensory input and the first direct electronic communication between the nervous systems of two humans.[16][17]

In 2004, under the heading Bridging the Island of the Colourblind Project, a British and completely color-blind artist, Neil Harbisson, started wearing an eyeborg on his head in order to hear colors.[18] His prosthetic device was included within his 2004 passport photograph which has been claimed to confirm his cyborg status.[19] In 2012 at TEDGlobal,[20] Harbisson explained that he did not feel like a cyborg when he started to use the eyeborg, he started to feel like a cyborg when he noticed that the software and his brain had united and given him an extra sense.[20]

Animal cyborgs[]

The US-based company Backyard Brains released what they refer to as "The world's first commercially available cyborg" called the RoboRoach. The project started as a University of Michigan biomedical engineering student senior design project in 2010[21] and was launched as an available beta product on 25 February 2011.[22] The RoboRoach was officially released into production via a TED talk at the TED Global conference,[23] and via the crowdsourcing website Kickstarter in 2013,[24] the kit allows students to use microstimulation to momentarily control the movements of a walking cockroach (left and right) using a bluetooth-enabled smartphone as the controller. Other groups have developed cyborg insects, including researchers at North Carolina State University[25] and UC Berkeley,[26] but the RoboRoach was the first kit available to the general public and was funded by the National Institute of Mental Health as a device to serve as a teaching aid to promote an interest in neuroscience.[23] Several animal welfare organizations including the RSPCA [27] and PETA [28] have expressed concerns about the ethics and welfare of animals in this project.

Social cyborgs[]

More broadly, the full term "cybernetic organism" is used to describe larger networks of communication and control. For example, cities, networks of roads, networks of software, corporations, markets, governments, and the collection of these things together. A corporation can be considered as an artificial intelligence that makes use of replaceable human components to function. People at all ranks can be considered replaceable agents of their functionally intelligent government institutions, whether such a view is desirable or not. The example above is reminiscent of the "organic paradigm" popular in the late 19th century due to the era's breakthroughs in understanding of cellular biology.

Jaap van Till tries to quantify this effect with his Synthecracy Network Law: V ~ N !, where V is value and N is number of connected people. This factorial growth is what he claims leads to a herd or hive like thinking between large, electronically connected groups.

Cyborg proliferation in society[]

In finance[]

Due to advances in IT, human investors are able to employ super computers to engage in financial activities such as trading at faster speeds across borders than ever before. Because of the increasing reliance on artificial intelligence and advanced computerization, modern finance is becoming “cyborg finance,” because the key players are part human and part machine.[29]

The new cyborg investor is distinct from past conceptions of investors because this new investor conception is faster, more data driven, automated, and less human.[30]

One key characteristic of cyborg finance is the use of incredibly powerful and fast computers to analyze and execute trading opportunities based on complex mathematical models. The software employing these algorithms is often proprietary and non-transparent, thus it is sometimes referred to as “black-box trading.”[30]

In medicine[]

In medicine, there are two important and different types of cyborgs: the restorative and the enhanced. Restorative technologies "restore lost function, organs, and limbs".[31] The key aspect of restorative cyborgization is the repair of broken or missing processes to revert to a healthy or average level of function. There is no enhancement to the original faculties and processes that were lost.

On the contrary, the enhanced cyborg "follows a principle, and it is the principle of optimal performance: maximising output (the information or modifications obtained) and minimising input (the energy expended in the process)".[32] Thus, the enhanced cyborg intends to exceed normal processes or even gain new functions that were not originally present.

Although prostheses in general supplement lost or damaged body parts with the integration of a mechanical artifice, bionic implants in medicine allow model organs or body parts to mimic the original function more closely. Michael Chorost wrote a memoir of his experience with cochlear implants, or bionic ear, titled "Rebuilt: How Becoming Part Computer Made Me More Human."[33] Jesse Sullivan became one of the first people to operate a fully robotic limb through a nerve-muscle graft, enabling him a complex range of motions beyond that of previous prosthetics.[34] By 2004, a fully functioning artificial heart was developed.[35] The continued technological development of bionic and nanotechnologies begins to raise the question of enhancement, and of the future possibilities for cyborgs which surpass the original functionality of the biological model. The ethics and desirability of "enhancement prosthetics" have been debated; their proponents include the transhumanist movement, with its belief that new technologies can assist the human race in developing beyond its present, normative limitations such as aging and disease, as well as other, more general incapacities, such as limitations on speed, strength, endurance, and intelligence. Opponents of the concept describe what they believe to be biases which propel the development and acceptance of such technologies; namely, a bias towards functionality and efficiency that may compel assent to a view of human people which de-emphasizes as defining characteristics actual manifestations of humanity and personhood, in favor of definition in terms of upgrades, versions, and utility.[36]

A brain-computer interface, or BCI, provides a direct path of communication from the brain to an external device, effectively creating a cyborg. Research of Invasive BCIs, which utilize electrodes implanted directly into the grey matter of the brain, has focused on restoring damaged eyesight in the blind and providing functionality to paralyzed people, most notably those with severe cases, such as Locked-In syndrome. This technology could enable people who are missing a limb or are in a wheelchair the power to control the devices that aide them through neural signals sent from the brain implants directly to computers or the devices. It is possible that this technology will also eventually be used with healthy people.[37]

Deep brain stimulation is a neurological surgical procedure used for therapeutic purposes. This process has aided in treating patients diagnosed with Parkinson's disease, Alzheimer's disease, Tourette syndrome, epilepsy, chronic headaches, and mental disorders. After the patient is unconscious, through anesthesia, brain pacemakers or electrodes, are implanted into the region of the brain where the cause of the disease is present. The region of the brain is then stimulated by bursts of electrical current to disrupt the oncoming surge of seizures. Like all invasive procedures, deep brain stimulation may put the patient at a higher risk. However, there have been more improvements in recent years with deep brain stimulation than any available drug treatment.[38]

Retinal implants are another form of cyborgization in medicine. The theory behind retinal stimulation to restore vision to people suffering from retinitis pigmentosa and vision loss due to aging (conditions in which people have an abnormally low amount of ganglion cells) is that the retinal implant and electrical stimulation would act as a substitute for the missing ganglion cells (cells which connect the eye to the brain.)

While work to perfect this technology is still being done, there have already been major advances in the use of electronic stimulation of the retina to allow the eye to sense patterns of light. A specialized camera is worn by the subject, such as on the frames of their glasses, which converts the image into a pattern of electrical stimulation. A chip located in the user's eye would then electrically stimulate the retina with this pattern by exciting certain nerve endings which transmit the image to the optic centers of the brain and the image would then appear to the user. If technological advances proceed as planned this technology may be used by thousands of blind people and restore vision to most of them.

A similar process has been created to aide people who have lost their vocal cords. This experimental device would do away with previously used robotic sounding voice simulators. The transmission of sound would start with a surgery to redirect the nerve that controls the voice and sound production to a muscle in the neck, where a nearby sensor would be able to pick up its electrical signals. The signals would then move to a processor which would control the timing and pitch of a voice simulator. That simulator would then vibrate producing a multitonal sound which could be shaped into words by the mouth.[39]

An August 26, 2012 article from Harvard University's homepage, by Peter Reuell of the Harvard Gazette, proceeds to discuss three-dimensional cyborg tissue research, published in the journal Nature Materials, with possible medical implications done by Charles M. Lieber, the Mark Hyman Jr. Professor of Chemistry, and Daniel Kohane, a Harvard Medical School Anesthesiology Professor at Boston Children's Hospital.[40]

In the military[]

Military organizations' research has recently focused on the utilisation of cyborg animals for the purposes of a supposed tactical advantage. DARPA has announced its interest in developing "cyborg insects" to transmit data from sensors implanted into the insect during the pupal stage. The insect's motion would be controlled from a Micro-Electro-Mechanical System (MEMS) and could conceivably survey an environment or detect explosives and gas.[41] Similarly, DARPA is developing a neural implant to remotely control the movement of sharks. The shark's unique senses would then be exploited to provide data feedback in relation to enemy ship movement or underwater explosives.[42]

In 2006, researchers at Cornell University invented[43] a new surgical procedure to implant artificial structures into insects during their metamorphic development.[44][45] The first insect cyborgs, moths with integrated electronics in their thorax, were demonstrated by the same researchers.[46][47] The initial success of the techniques has resulted in increased research and the creation of a program called Hybrid-Insect-MEMS, HI-MEMS. Its goal, according to DARPA's Microsystems Technology Office, is to develop "tightly coupled machine-insect interfaces by placing micro-mechanical systems inside the insects during the early stages of metamorphosis".[48]

The use of neural implants has recently been attempted, with success, on roaches. Surgically applied electrodes were put on the insect, which were remotely controlled by a human. The results, although sometimes different, basically showed that the roach could be controlled by the impulses it received through the electrodes. DARPA is now funding this research because of its obvious beneficial applications to the military and other areas[49]

In 2009 at the Institute of Electrical and Electronics Engineers (IEEE) Micro-electronic mechanical systems (MEMS) conference in Italy, researchers demonstrated the first "wireless" flying-beetle cyborg.[50] Engineers at the University of California at Berkeley have pioneered the design of a "remote controlled beetle", funded by the DARPA HI-MEMS Program. Filmed evidence of this can be viewed here.[51] This was followed later that year by the demonstration of wireless control of a "lift-assisted" moth-cyborg.[52]

Eventually researchers plan to develop HI-MEMS for dragonflies, bees, rats and pigeons.[53][54] For the HI-MEMS Cybernetic bug to be considered a success, it must fly 100 metres (330 ft) from a starting point, guided via computer into a controlled landing within 5 metres (16 ft) of a specific end point. Once landed, the cybernetic bug must remain in place.[53]

In art[]

The concept of the cyborg is often associated with science fiction. However, many artists have tried to create public awareness of cybernetic organisms; these can range from paintings to installations. Some artists who create such works are Neil Harbisson, Patricia Piccinini, Steve Mann, Orlan, H.R. Giger, Lee Bul, Wafaa Bilal, Tim Hawkinson and Stelarc.

Stelarc is a performance artist who has visually probed and acoustically amplified his body. He uses medical instruments, prosthetics, robotics, virtual reality systems, the Internet and biotechnology to explore alternate, intimate and involuntary interfaces with the body. He has made three films of the inside of his body and has performed with a third hand and a virtual arm. Between 1976–1988 he completed 25 body suspension performances with hooks into the skin. For 'Third Ear' he surgically constructed an extra ear within his arm that was internet enabled, making it a publicly accessible acoustical organ for people in other places.[55] He is presently performing as his avatar from his second life site.[56]

Tim Hawkinson promotes the idea that bodies and machines are coming together as one, where human features are combined with technology to create the Cyborg. Hawkinson's piece Emoter presented how society is now dependent on technology.[57]

Wafaa Bilal is an Iraqi-American performance artist who had a small 10 megapixel digital camera surgically implanted into the back of his head, part of a project entitled 3rd I.[58] For one year, beginning 15 December 2010, an image is captured once per minute 24 hours a day and streamed live to [7] and the Mathaf: Arab Museum of Modern Art. The site also displays Bilal's location via GPS. Bilal says that the reason why he put the camera in the back of the head was to make an "allegorical statement about the things we don't see and leave behind."[59] As a professor at NYU, this project has raised privacy issues, and so Bilal has been asked to ensure that his camera does not take photographs in NYU buildings.[59]

Machines are becoming more ubiquitous in the artistic process itself, with computerized drawing pads replacing pen and paper, and drum machines becoming nearly as popular as human drummers. This is perhaps most notable in generative art and music. Composers such as Brian Eno have developed and utilized software which can build entire musical scores from a few basic mathematical parameters.[60]

Scott Draves is a generative artist whose work is explicitly described as a "cyborg mind". His Electric Sheep project generates abstract art by combining the work of many computers and people over the internet.[61]

Artists as cyborgs[]

Artists have explored the term cyborg from a perspective involving imagination. Some work to make an abstract idea of technological and human-bodily union apparent to reality in an art form utilizing varying mediums, from sculptures and drawings to digital renderings. Artists that seek to make cyborg-based fantasies a reality often call themselves cyborg artists, or may consider their artwork "cyborg". How an artist or their work may be considered cyborg will vary depending upon the interpreter's flexibility with the term. Scholars that rely upon a strict, technical description of cyborg, often going by Norbert Wiener's cybernetic theory and Manfred E. Clynes and Nathan S. Kline's first use of the term, would likely argue that most cyborg artists do not qualify to be considered cyborgs.[62] Scholars considering a more flexible description of cyborgs may argue it incorporates more than cybernetics.[63] Others may speak of defining subcategories, or specialized cyborg types, that qualify different levels of cyborg at which technology influences an individual. This may range from technological instruments being external, temporary, and removable to being fully integrated and permanent.[64] Nonetheless, cyborg artists are artists. Being so, it can be expected for them to incorporate the cyborg idea rather than a strict, technical representation of the term,[65] seeing how their work will sometimes revolve around other purposes outside of cyborgism.[62]

In body modification[]

As medical technology becomes more advanced, some techniques and innovations are adopted by the body modification community. While not yet cyborgs in the strict definition of Manfred Clynes and Nathan Kline, technological developments like implantable silicon silk electronics,[66] augmented reality[67] and QR codes[68] are bridging the disconnect between technology and the body. Hypothetical technologies such as digital tattoo interfaces[69][70] would blend body modification aesthetics with interactivity and functionality, bringing a transhumanist way of life into present day reality.

In popular culture[]

Main article: Cyborgs in fiction

Cyborgs have become a well-known part of science fiction literature and other media. Although many of these characters may be technically androids, they are often referred to as cyborgs. Well-known examples from film and television include RoboCop, Terminators, Evangelion, The Six Million Dollar Man, Replicants from Blade Runner, Daleks and Cybermen from Doctor Who, the Borg from Star Trek, Darth Vader and General Grievous from Star Wars, Inspector Gadget, and Cylons from the 2004 Battlestar Galactica series. From manga and anime are characters such as 8 Man (the inspiration for RoboCop), Kamen Rider, Ghost in the Shell's Motoko Kusanagi, as well as characters from western comic books like Tony Stark (after his Extremis and Bleeding Edge armor) and Victor "Cyborg" Stone. The Deus Ex videogame series deals extensively with the near-future rise of cyborgs and their corporate ownership, as does the Syndicate series.

Cyborgization in critical deaf studies[]

Joseph Michael Valente, describes "cyborgization" as an attempt to codify "normalization" through cochlear implantation in young deaf children. Drawing from Paddy Ladd's work on Deaf epistemology and Donna Haraway's Cyborg ontology, Valente "use[s] the concept of the cyborg as a way of agitating constructions of cyborg perfection (for the deaf child that would be to become fully hearing)". He claims that cochlear implant manufacturers advertise and sell cochlear implants as a mechanical device as well as an uncomplicated medical "miracle cure". Valente criticizes cochlear implant researchers whose studies largely to date do not include cochlear implant recipients, despite cochlear implants having been approved by the United States Food and Drug Administration (FDA) since 1984.[71] Pamela J. Kincheloe discusses the representation of the cochlear implant in media and popular culture as a case study for present and future responses to human alteration and enhancement.[72]

Cyborg Foundation[]

In 2010, the Cyborg Foundation became the world's first international organization dedicated to help humans become cyborgs.[73] The foundation was created by cyborg Neil Harbisson and Moon Ribas as a response to the growing amount of letters and emails received from people around the world interested in becoming a cyborg.[74] The foundation's main aims are to extend human senses and abilities by creating and applying cybernetic extensions to the body,[75] to promote the use of cybernetics in cultural events and to defend cyborg rights.[76] In 2010, the foundation, based in Mataró (Barcelona), was the overall winner of the Cre@tic Awards, organized by Tecnocampus Mataró.[77]

In 2012, Spanish film director Rafel Duran Torrent, created a short film about the Cyborg Foundation. In 2013, the film won the Grand Jury Prize at the Sundance Film Festival's Focus Forward Filmmakers Competition and was awarded with $100,000 USD.[78]

See also[]

References[]

  1. "Cyborgs and Space [1]," in Astronautics (September 1960), by Manfred E. Clynes and Nathan S. Kline.
  2. D. S. Halacy, Cyborg: Evolution of the Superman (New York: Harper and Row Publishers, 1965), 7.
  3. Technology as extension of human functional architecture by [[wikipedia:Alexander Chislenko|]]
  4. A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the Late Twentieth Century by [[wikipedia:Donna Haraway|]]
  5. Sterling, Bruce. Schismatrix. Arbor House. 1985.
  6. Manfred E. Clynes, and Nathan S. Kline, (1960) "Cyborgs and space," Astronautics, September, pp. 26–27 and 74–75; reprinted in Gray, Mentor, and Figueroa-Sarriera, eds., The Cyborg Handbook, New York: Routledge, 1995, pp. 29–34. (hardback: ISBN 0-415-90848-5; paperback: ISBN 0-415-90849-3)
  7. OED On-line[dead link]
  8. Cyborg:Digital Destiny and Human Possibility in the Age of the Wearable Computer. By EyeTap. Retrieved on July 4, 2013.
  9. http://www.mrs.org/s13-program-ss/
  10. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6409466
  11. *Miah, Andy / Rich, Emma. The medicalization of cyberspace, Routledge (New York, 2008). p.130 ISBN 978-0-415-37622-8
  12. Otto Bock HealthCare : a global leader in healthcare products | Otto Bock[dead link]
  13. Vision quest, Wired Magazine, September 2002
  14. Baker, Sherry. "Rise Of The Cyborgs." Discover 29.10 (2008): 50. Science Reference Center. Web. 4 Nov. 2012
  15. Macintyre, James BMI: the research that holds the key to hope for millions, The Independent 29 May 2008
  16. Warwick, K, Gasson, M, Hutt, B, Goodhew, I, Kyberd, P, Schulzrinne, H and Wu, X: "Thought Communication and Control: A First Step using Radiotelegraphy", IEE Proceedings on Communications, 151(3), pp.185–189, 2004
  17. Byproduct: On the Excess of Embedded Art Practices, by Marisa Jahn, YYZBOOKS, 2010 December 4th
  18. Alfredo M. Ronchi: Eculture: Cultural Content in the Digital Age. Springer (New York, 2009). p.319 ISBN 978-3-540-75273-8
  19. Andy Miah, Emma Rich: The Medicalization of Cyberspace Routledge (New York, 2008) p.130 (Hardcover:ISBN 978-0-415-37622-8 Papercover: ISBN 978-0-415-39364-5)
  20. 20.0 20.1 "I listen to color", [[wikipedia:TED Global|]], 27 June 2012.
  21. Caitlin Huston (February 11, 2010). Engineering seniors' work on prototypes extends beyond traditional classroom projects. Michigan Daily. Retrieved on Jan 3, 2014.
  22. Backyard Brains (March 3, 2011). Working RoboRoach Prototype Unveiled to Students of Grand Valley State University. Backyard Brains. Retrieved on Jan 2, 2014.
  23. 23.0 23.1 Upbin, B. (June 12, 2013). Science! Democracy! Roboroaches!. Forbes. Retrieved on Jan 1, 2014.
  24. Backyard Brains, Inc. (June 10, 2013). The RoboRoach: Control a living insect from your smartphone!. Kickstarter, Inc.. Retrieved on Jan 1, 2014.
  25. http://web.ncsu.edu/abstract/science/wms-cockroach-steering/
  26. http://www.eecs.berkeley.edu/Research/Projects/Data/105682.html
  27. Wakefield, J. (June 10, 2013). TEDGlobal welcomes robot cockroaches. BBC News Technology. Retrieved on December 8, 2013.
  28. Hamilton, A. (November 1, 2013). Resistance is futile: PETA attempts to halt the sale of remote-controlled cyborg cockroaches. Time NewsFeed. Retrieved on December 8, 2013.
  29. Lin, Tom C. W., Vistas of Finance. 61 UCLA Law Review Discourse 78 (2013); Available at SSRN: http://ssrn.com/abstract=2297930
  30. 30.0 30.1 Lin, Tom C. W., The New Investor. 60 UCLA Law Review 678 (2013). Available at SSRN: http://ssrn.com/abstract=2227498
  31. Gray, Chris Hables, ed. The Cyborg Handbook. New York: Routledge, 1995
  32. Lyotard, Jean François: The postmodern condition: A report on knowledge. Minneapolis: [[wikipedia:University of Minnesota Press|]], 1984
  33. Chorost, Michael. "The Naked Ear." Technology Review 111.1 (2008): 72–74. Academic Search Complete. EBSCO. Web. 8 Mar. 2010.
  34. Murray, Chuck. "Re-wiring the Body." Design News 60.15 (2005): 67–72. Academic Search Complete. EBSCO. Web. 8 Mar. 2010.
  35. Haddad, Michel, et al. "Improved Early Survival with the Total Artificial Heart." Artificial Organs 28.2 (2004): 161–165. Academic Search Complete. EBSCO. Web. 8 Mar. 2010.
  36. Marsen, Sky. "Becoming More Than Human: Technology and the Post-Human Condition Introduction." Journal of Evolution & Technology 19.1 (2008): 1–5. Academic Search Complete. EBSCO. Web. 9 Mar. 2010.
  37. Baker, Sherry. "RISE OF THE CYBORGS." Discover 29.10 (2008): 50–57. Academic Search Complete. EBSCO. Web. 8 Mar. 2010.
  38. Gallagher, James (28 November 2011). "Alzheimer's: Deep brain stimulation 'reverses' disease". BBC News. http://www.bbc.co.uk/news/health-15890749. 
  39. Thurston, Bonnie. "Was blind, but now I see." 11. Christian Century Foundation, 2007. Academic Search Complete. EBSCO. Web. 8 Mar. 2010.
  40. http://news.harvard.edu/gazette/story/2012/08/merging-the-biological-electronic/
  41. Military seeks to develop 'insect cyborgs'. Washington Times (13 March 2006). Retrieved on 29 August 2011.
  42. Military Plans Cyborg Sharks. LiveScience (7 March 2006). Retrieved on 29 August 2011.
  43. Lal A, Ewer J, Paul A, Bozkurt A, "Surgically Implanted Micro-platforms and Microsystems in Arthropods and Methods Based Thereon", US Patent Application # US20100025527, Filed on 12/11/2007.
  44. Paul A., Bozkurt A., Ewer J., Blossey B., Lal A. (2006) Surgically Implanted Micro-Platforms in Manduca-Sexta, 2006 Solid State Sensor and Actuator Workshop, Hilton Head Island, June 2006, pp 209–211.
  45. Bozkurt A, Gilmour R, Sinha A, Stern D, Lal A (2009). Insect Machine Interface Based Neuro Cybernetics. IEEE Transactions on Biomedical Engineering, 56:6, pp. 1727–33.
  46. Bozkurt A., Paul A., Pulla S., Ramkumar R., Blossey B., Ewer J., Gilmour R, Lal A. (2007) Microprobe Microsystem Platform Inserted During Early Metamorphosis to Actuate Insect Flight Muscle. 20th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2007), Kobe, JAPAN, January 2007, pp. 405–408.
  47. Bozkurt A, Gilmour R, Stern D, Lal A. (2008) MEMS based Bioelectronic Neuromuscular Interfaces for Insect Cyborg Flight Control. 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2008), Tucson, AZ, January 2008, pp. 160–163.
  48. Judy, Jack. Hybrid Insect MEMS (HI-MEMS). [[wikipedia:DARPA|]] [[wikipedia:Microsystems Technology Office|]]. Archived from the original on February 10, 2011. Retrieved on 2013-04-09.
  49. Anthes, E. (17 February 2013). "The race to create 'insect cyborgs'". The Guardian (London). http://www.guardian.co.uk/science/2013/feb/17/race-to-create-insect-cyborgs. Retrieved 23 February 2013. 
  50. Ornes, Stephen. "THE PENTAGON'S BEETLE BORGS." Discover 30.5 (2009): 14. Academic Search Complete. EBSCO. Web. 1 Mar. 2010.
  51. Cyborg beetles to be the US military's latest weapon. YouTube (28 October 2009). Retrieved on 29 August 2011.
  52. Bozkurt A, Lal A, Gilmour R. (2009) Radio Control of Insects for Biobotic Domestication. 4th International Conference of the IEEE Neural Engineering (NER'09), Antalya, Turkey.
  53. 53.0 53.1 Guizzo, Eric. "Moth Pupa + MEMS Chip = Remote Controlled Cyborg Insect." Automan. IEEE Spectrum, 17 Feb 2009. Web. 1 Mar 2010..
  54. Judy, Jack. Hybrid Insect MEMS (HI-MEMS). [[wikipedia:DARPA|]] [[wikipedia:Microsystems Technology Office|]]. Archived from the original on February 10, 2011. Retrieved on 2013-04-09.
  55. Extended-Body: Interview with Stelarc. Stanford.edu. Retrieved on 29 August 2011.
  56. [2]
  57. Tim Hawkinson. Tfaoi.com (25 September 2005). Retrieved on 29 August 2011.
  58. Man Has Camera Screwed Into Head – Bing Videos. Bing.com. Retrieved on 29 August 2011.
  59. 59.0 59.1 Wafaa Bilal, NYU Artist, Gets Camera Implanted In Head. Huffington Post. Retrieved on 29 August 2011.
  60. Generative Music – Brian Eno. In Motion Magazine. Retrieved on 29 August 2011.
  61. [3]
  62. 62.0 62.1 Tenney, Tom; "Cybernetics in Art and the Myth of the Cyborg Artist"; inc.ongruo.us; 29 December 2010; March 9, 2012. | http://inc.ongruo.us/2010/12/29/cybernetics-in-art-and-the-myth-of-the-cyborg-artist/
  63. Volkart, Yvonne; "Cyborg Bodies. The End of the Progressive Body: Editorial"; medienkunstnetz.de; March 9, 2012. | http://www.medienkunstnetz.de/themes/cyborg_bodies/editorial/1/
  64. "What is a Cyborg? "; CyborgAnthropology.com; 18 Mar. 2012. | http://cyborganthropology.com/What_is_a_Cyborg%3F
  65. Taylor, Kate; "Cyborg The artist as cyborg"; theglobeandmail.com; 18 February 2011; Web; March 5, 2012. | http://www.theglobeandmail.com/news/arts/the-artist-as-cyborg/article1913032/
  66. "Implantable Silicon-Silk Electronics". http://www.technologyreview.com/computing/23847/page1/. 
  67. [4]
  68. [5]
  69. Sorrel, Charlie (20 November 2009). "The Illustrated Man: How LED Tattoos Could Make Your Skin a Screen". Wired. http://www.wired.com/gadgetlab/2009/11/the-illustrated-man-how-led-tattoos-could-change-the-face-of-humanity/. 
  70. [6]
  71. Valente, Joseph Michael (2011). "Cyborgization: Deaf Education for Young Children in the Cochlear Implantation Era". Qualitative Inquiry 17 (7): 639–652. doi:10.1177/1077800411414006. http://qix.sagepub.com. 
  72. Kincheloe, Pamela (2010). "Do Androids Dream of Electric Speech: The Construction of Cochlear Implant Identity on American Television and the "New Deaf Cyborg"". M/C Journal. http://journal.media-culture.org.au/index.php/mcjournal/article/viewArticle/254. 
  73. García, F.C. "Nace una fundación dedicada a convertir humanos en ciborgs", [[wikipedia:La Vanguardia|]], 1 March 2011.
  74. Rottenschlage, Andreas "The Sound of the Cyborg" [[wikipedia:The Red Bulletin|]], 1 Mar 2011.
  75. Redacción "Una fundación se dedica a convertir humanos en ciborgs" [[wikipedia:El Comercio (Peru)|]], 1 Mar 2011.
  76. Calls, Albert ""Les noves tecnologies seran part del nostre cos i extensió del cervell"" La Tribuna, 3 Jan 2011.
  77. Martínez, Ll. "La Fundació Cyborg s'endú el primer premi dels Cre@tic", [[wikipedia:Avui|]], 20 Nov 2010
  78. Pond, Steve "Cyborg Foundation" wins $100K Focus Forward prize, Chicago Tribune, 22 January 2013
  • Haraway, Donna. "A Cyborg Manifesto: Science, Technology and Socialist-Feminism in the Late Twentieth Century." The Transgender Studies Reader. Eds. Susan Stryker and Stephen Whittle. New York: Routledge, 2006. pp. 103–118.
  • Mitchell, Kaye. "Bodies That Matter: Science Fiction, Technoculture, and the Gendered Body." Science Fiction Studies.Vol. 33, No. 1, Technoculture and Science Fiction (Mar., 2006), pp. 109–128

Further reading[]

  • Balsamo, Anne. Technologies of the Gendered Body: Reading Cyborg Women. Durham: Duke University Press, 1996.
  • Caidin, Martin. Cyborg; A Novel. New York: Arbor House, 1972.
  • Clark, Andy. Natural-Born Cyborgs. Oxford: Oxford University Press, 2004.
  • Crittenden, Chris. "Self-Deselection: Technopsychotic Annihilation via Cyborg." Ethics & the Environment 7.2 (Autumn 2002): 127–152.
  • Franchi, Stefano, and Güven Güzeldere, eds. Mechanical Bodies, Computational Minds: Artificial Intelligence from Automata to Cyborgs. MIT Press, 2005.
  • Flanagan, Mary, and Austin Booth, eds. Reload: Rethinking Women + Cyberculture. Cambridge, Mass.: MIT Press, 2002.
  • Glaser, Horst Albert and Rossbach, Sabine: The Artificial Human, Frankfurt/M., Bern, New York 2011 "The Artificial Human"
  • Gray, Chris Hables. Cyborg Citizen: Politics in the Posthuman Age. Routledge & Kegan Paul, 2001.
  • Gray, Chris Hables, ed. The Cyborg Handbook. New York: Routledge, 1995.
  • Grenville, Bruce, ed. The Uncanny: Experiments in Cyborg Culture. Arsenal Pulp Press, 2002.
  • Halacy, D. S. Cyborg: Evolution of the Superman. New York: Harper & Row, 1965.
  • Halberstam, Judith, and Ira Livingston. Posthuman Bodies. Bloomington: Indiana University Press, 1995.
  • Haraway, Donna. Simians, Cyborgs, and Women; The Reinvention of Nature. New York: Routledge, 1990.
  • Klugman, Craig. "From Cyborg Fiction to Medical Reality." Literature and Medicine 20.1 (Spring 2001): 39–54.
  • Kurzweil, Ray. The Singularity Is Near: When Humans Transcend Biology. Viking, 2005.
  • Mann, Steve. "Telematic Tubs against Terror: Bathing in the Immersive Interactive Media of the Post-Cyborg Age." Leonardo 37.5 (October 2004): 372–373.
  • Mann, Steve, and Hal Niedzviecki. Cyborg: digital destiny and human possibility in the age of the wearable computer Doubleday, 2001. ISBN 0-385-65825-7 (A paperback version also exists, ISBN 0-385-65826-5).
  • Masamune Shirow, Ghost in the Shell. Endnotes, 1991. Kodansha ISBN 4-7700-2919-5.
  • Mertz, David. "Cyborgs". International Encyclopedia of Communications. Blackwell 2008. ISBN 0-19-504994-2. http://gnosis.cx/publish/mertz/Cyborgs.pdf. Retrieved 28 October 2008. 
  • Mitchell, William. Me++: The Cyborg Self and the Networked City. Cambridge, Mass.: MIT Press, 2003.
  • Muri, Allison. The Enlightenment Cyborg: A History of Communications and Control in the Human Machine, 1660–1830. Toronto: University of Toronto Press, 2006.
  • Muri, Allison. Of Shit and the Soul: Tropes of Cybernetic Disembodiment. Body & Society 9.3 (2003): 73–92.
  • Nicogossian, Judith. From Reconstruction to the Augmentation of the Human Body in Restorative Medicine and in Cybernetics THESIS in Biological and Cultural Anthropology (2011). http://eprints.qut.edu.au/31911/
  • Nishime, LeiLani. "The Mulatto Cyborg: Imagining a Multiracial Future." Cinema Journal 44.2 (Winter 2005), 34–49.
  • The Oxford English dictionary. 2nd ed. edited by J.A. Simpson and E.S.C. Weiner. Oxford: Clarendon Press; Oxford and New York: Oxford University Press, 1989. Vol 4 p. 188.
  • Rorvik, David M. As Man Becomes Machine: the Evolution of the Cyborg. Garden City, N.Y.: Doubleday, 1971.
  • Rushing, Janice Hocker, and Thomas S. Frentz. Projecting the Shadow: The Cyborg Hero in American Film. Chicago: University of Chicago Press, 1995.
  • Smith, Marquard, and Joanne Morra, eds. The Prosthetic Impulse: From a Posthuman Present to a Biocultural Future. MIT Press, 2005.
  • The science fiction handbook for readers and writers. By George S. Elrick. Chicago: Chicago Review Press, 1978, p. 77.
  • The science fiction encyclopaedia. General editor, Peter Nicholls, associate editor, John Clute, technical editor, Carolyn Eardley, contributing editors, Malcolm Edwards, Brian Stableford. 1st ed. Garden City, N.Y.: Doubleday, 1979, p. 151.
  • Warwick, Kevin. I,Cyborg, University of Illinois Press, 2004.
  • Yoshito Ikada, Bio Materials: an approach to Artificial Organs

External links[]

Template:Cybernetics Template:Robotics

Category:Cyborgs Category:Cybernetics Category:Biocybernetics Category:Biotechnology Category:Cyberpunk themes Category:Futurology Category:Humans Category:Implants Category:Neurotechnology Category:Robotics Category:Science fiction themes Category:Transhumanism

Advertisement