משפט הזווית החיצונית במשולש
מראה
בגאומטריה אוקלידית, משפט הזווית החיצונית קובע כי זווית חיצונית במשולש שווה בגודלה לסכום שתי הזוויות הפנימיות שאינן סמוכות לה. זהו ניסוח מחדש של העובדה שסכום הזוויות במשולש שווה לזווית שטוחה: בשרטוט, α+∢β+∢γ=180°=∢γ+∢δ∢, ולכן α+∢β=∢δ∢.
ממילא נובע שזווית חיצונית גדולה מכל זווית פנימית של המשולש שאינה סמוכה לה.
הוכחת המשפט
[עריכת קוד מקור | עריכה]נתבונן במשולש ABC. נראה שהזווית C שווה לסכום הזוויות האחרות. תהי Y נקודה על המשך הקטע AC. העבר מ-C ישר CX המקביל ל-AB. הזווית החיצונית ל-C, שהיא הזווית BCY, שווה לסכום הזוויות XCY ו-BCX. אולם XCY=BAC בהיותן זוויות מקבילות, ו-BCX=ABC בהיותן זוויות משלימות. לכן BCY=BCX+XCY=ABC+BAC=a+b.
לקריאה נוספת
[עריכת קוד מקור | עריכה]- בני גורן, גאומטריה של המישור
- "אפשר גם אחרת" כיתה ט - חלק א', תשע"ו
טריגונומטריה | ||
---|---|---|
משפטים בטריגונומטריה | זהויות טריגונומטריות • משפט הסינוסים • משפט הקוסינוסים • משפט הטנגנסים • משפט לז'נדר על משולשים כדוריים • הגבול של sin(x)/x | |
פונקציות טריגונומטריות | טנגנס • סינוס • קוסינוס • פונקציות טריגונומטריות הפוכות |