Jump to content

Reelin: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
DOI bot (talk | contribs)
m Citation maintenance. Formatted: doi, volume, pages, journal. Initiated by Boghog2. You can use this bot yourself! Please report any bugs.
removed URLs in citations that have DOIs; removed wiki links from journal names (many of these links were not to articles about the journals, but to the topics after which the journals were named)
Line 117: Line 117:
--> Outside the brain, reelin is found in adult mammalian blood, [[liver]], pituitary [[pars intermedia]], and adrenal [[chromaffin cell]]s.<!--
--> Outside the brain, reelin is found in adult mammalian blood, [[liver]], pituitary [[pars intermedia]], and adrenal [[chromaffin cell]]s.<!--


--><ref name="bodyexpr">{{cite journal |author=Smalheiser NR, Costa E, Guidotti A, ''et al'' |title=Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue=3 |pages=1281–6 |year=2000 |month=February |pmid=10655522 |pmc=15597 |url=http://www.pnas.org/cgi/pmidlookup?view=long&pmid=10655522 |doi=10.1073/pnas.97.3.1281}}</ref><!--
--><ref name="bodyexpr">{{cite journal |author=Smalheiser NR, Costa E, Guidotti A, ''et al'' |title=Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue=3 |pages=1281–6 |year=2000 |month=February |pmid=10655522 |pmc=15597 |url= |doi=10.1073/pnas.97.3.1281}}</ref><!--


--> In the liver, reelin is localized in [[hepatic stellate cell]]s.<ref name="liver2">{{cite journal |author=Samama B, Boehm N |title=Reelin immunoreactivity in lymphatics and liver during development and adult life |journal=Anat Rec a Discov Mol Cell Evol Biol |volume=285 |issue=1 |pages=595–9 |year=2005 |month=July |pmid=15912522 |doi=10.1002/ar.a.20202 |url=}}</ref><!--
--> In the liver, reelin is localized in [[hepatic stellate cell]]s.<ref name="liver2">{{cite journal |author=Samama B, Boehm N |title=Reelin immunoreactivity in lymphatics and liver during development and adult life |journal=Anat Rec a Discov Mol Cell Evol Biol |volume=285 |issue=1 |pages=595–9 |year=2005 |month=July |pmid=15912522 |doi=10.1002/ar.a.20202 |url=}}</ref><!--
Line 347: Line 347:
--> and 2000<!--
--> and 2000<!--


--><ref name="szproof2">{{cite journal |author=Guidotti A, Auta J, Davis JM, ''et al'' |title=Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study |journal=Arch. Gen. Psychiatry |volume=57 |issue=11 |pages=1061–9 |year=2000 |month=November |pmid=11074872 |url=http://archpsyc.ama-assn.org/cgi/content/full/57/11/1061 |doi=10.1001/archpsyc.57.11.1061 }}</ref><!--
--><ref name="szproof2">{{cite journal |author=Guidotti A, Auta J, Davis JM, ''et al'' |title=Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study |journal=Arch. Gen. Psychiatry |volume=57 |issue=11 |pages=1061–9 |year=2000 |month=November |pmid=11074872 |url= |doi=10.1001/archpsyc.57.11.1061 }}</ref><!--


--> and independently confirmed in the postmortem studies of hippocampus,<!--
--> and independently confirmed in the postmortem studies of hippocampus,<!--
Line 397: Line 397:
--> [[Methylation]] inhibitors and [[histone deacetylase]] inhibitors, such as [[valproic acid]], increase reelin mRNA levels,<!--
--> [[Methylation]] inhibitors and [[histone deacetylase]] inhibitors, such as [[valproic acid]], increase reelin mRNA levels,<!--


--><ref name ="valpro">{{cite journal |author=Tremolizzo L, Doueiri MS, Dong E, ''et al'' |title=Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice |journal=Biol. Psychiatry |volume=57 |issue=5 |pages=500–9 |year=2005 |month=March |pmid=15737665 |doi=10.1016/j.biopsych.2004.11.046 |url=}}</ref><ref name="valproicreelin">{{cite journal |author=Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR |title=On the epigenetic regulation of the human reelin promoter |journal=Nucleic Acids Res. |volume=30 |issue=13 |pages=2930–9 |year=2002 |month=July |pmid=12087179 |pmc=117056 |url=http://nar.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=12087179 |doi=10.1093/nar/gkf401}}</ref><ref>{{cite journal |author=Mitchell CP, Chen Y, Kundakovic M, Costa E, Grayson DR |title=Histone deacetylase inhibitors decrease reelin promoter methylation in vitro |journal=J. Neurochem. |volume=93 |issue=2 |pages=483–92 |year=2005 |month=April |pmid=15816871 |doi=10.1111/j.1471-4159.2005.03040.x |url=}}</ref><!--
--><ref name ="valpro">{{cite journal |author=Tremolizzo L, Doueiri MS, Dong E, ''et al'' |title=Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice |journal=Biol. Psychiatry |volume=57 |issue=5 |pages=500–9 |year=2005 |month=March |pmid=15737665 |doi=10.1016/j.biopsych.2004.11.046 |url=}}</ref><ref name="valproicreelin">{{cite journal |author=Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR |title=On the epigenetic regulation of the human reelin promoter |journal=Nucleic Acids Res. |volume=30 |issue=13 |pages=2930–9 |year=2002 |month=July |pmid=12087179 |pmc=117056 |url= |doi=10.1093/nar/gkf401}}</ref><ref>{{cite journal |author=Mitchell CP, Chen Y, Kundakovic M, Costa E, Grayson DR |title=Histone deacetylase inhibitors decrease reelin promoter methylation in vitro |journal=J. Neurochem. |volume=93 |issue=2 |pages=483–92 |year=2005 |month=April |pmid=15816871 |doi=10.1111/j.1471-4159.2005.03040.x |url=}}</ref><!--


--> while L-methionine treatment downregulates the phenotypic expression of reelin.<!--
--> while L-methionine treatment downregulates the phenotypic expression of reelin.<!--
Line 427: Line 427:
Beyond the epigenetic evidence there is a study showing the change in reelin blood levels in schizophrenia and mood disorders.<!---
Beyond the epigenetic evidence there is a study showing the change in reelin blood levels in schizophrenia and mood disorders.<!---


---><ref name="fatemi_blood_reelin">{{cite journal | author = Fatemi SH, Kroll JL, Stary JM | title = Altered levels of Reelin and its isoforms in schizophrenia and mood disorders | journal = Neuroreport | volume = 12 | issue = 15 | pages = 3209–15 | year = 2001 | month = October | pmid = 11711858 | url = http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=0959-4965&volume=12&issue=15&spage=3209 | doi = 10.1097/00001756-200110290-00014 }}</ref>
---><ref name="fatemi_blood_reelin">{{cite journal | author = Fatemi SH, Kroll JL, Stary JM | title = Altered levels of Reelin and its isoforms in schizophrenia and mood disorders | journal = Neuroreport | volume = 12 | issue = 15 | pages = 3209–15 | year = 2001 | month = October | pmid = 11711858 | url = | doi = 10.1097/00001756-200110290-00014 }}</ref>


Other interesting findings probably linking reelin pathway to developmental hypotheses of schizophrenia are noted in the studies on mice that are either prenatally infected with [[influenza]] virus<!---
Other interesting findings probably linking reelin pathway to developmental hypotheses of schizophrenia are noted in the studies on mice that are either prenatally infected with [[influenza]] virus<!---
Line 457: Line 457:
Considering the role of reelin in promoting dendritogenesis,<ref name="Niu_2004"/><ref name="pmid18477607"/> suggestions were made that the localized dendritic spine deficit observed in schizophrenia <!--
Considering the role of reelin in promoting dendritogenesis,<ref name="Niu_2004"/><ref name="pmid18477607"/> suggestions were made that the localized dendritic spine deficit observed in schizophrenia <!--


--><ref name="pmid18463626">{{cite journal |author=Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA |title=Reduced Dendritic Spine Density in Auditory Cortex of Subjects with Schizophrenia |journal=[[Neuropsychopharmacology]] |volume= |issue= |pages= |year=2008 |month=May |pmid=18463626 |doi=10.1038/npp.2008.67}}</ref><ref name="pmid10632234">{{cite journal |author=Glantz LA, Lewis DA |title=Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia |journal=[[Arch. Gen. Psychiatry]] |volume=57 |issue=1 |pages=65–73 |year=2000 |month=January |pmid=10632234 |url=http://archpsyc.ama-assn.org/cgi/pmidlookup?view=long&pmid=10632234 |doi=10.1001/archpsyc.57.1.65}}</ref><!--
--><ref name="pmid18463626">{{cite journal |author=Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA |title=Reduced Dendritic Spine Density in Auditory Cortex of Subjects with Schizophrenia |journal=[[Neuropsychopharmacology]] |volume= |issue= |pages= |year=2008 |month=May |pmid=18463626 |doi=10.1038/npp.2008.67}}</ref><ref name="pmid10632234">{{cite journal |author=Glantz LA, Lewis DA |title=Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia |journal=Arch. Gen. Psychiatry |volume=57 |issue=1 |pages=65–73 |year=2000 |month=January |pmid=10632234 |url= |doi=10.1001/archpsyc.57.1.65}}</ref><!--


--> could be in part connected with the downregulation of reelin.<!--
--> could be in part connected with the downregulation of reelin.<!--


--><ref name="pmid10725376">{{cite journal |author=Rodriguez MA, Pesold C, Liu WS, ''et al'' |title=Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex |journal=[[Proc. Natl. Acad. Sci. U.S.A.]] |volume=97 |issue=7 |pages=3550–5 |year=2000 |month=March |pmid=10725376 |pmc=16277 |doi=10.1073/pnas.050589797 |url=}}</ref><ref name="pmid11592844">{{cite journal |author=Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C |title=Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability |journal=[[Neurobiol. Dis.]] |volume=8 |issue=5 |pages=723–42 |year=2001 |month=October |pmid=11592844 |doi=10.1006/nbdi.2001.0436}}</ref><!--
--><ref name="pmid10725376">{{cite journal |author=Rodriguez MA, Pesold C, Liu WS, ''et al'' |title=Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex |journal=[[Proc. Natl. Acad. Sci. U.S.A.]] |volume=97 |issue=7 |pages=3550–5 |year=2000 |month=March |pmid=10725376 |pmc=16277 |doi=10.1073/pnas.050589797 |url=}}</ref><ref name="pmid11592844">{{cite journal |author=Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C |title=Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability |journal=Neurobiol. Dis. |volume=8 |issue=5 |pages=723–42 |year=2001 |month=October |pmid=11592844 |doi=10.1006/nbdi.2001.0436}}</ref><!--


-->
-->
Line 475: Line 475:
--> the precise mechanism leading to this is unknown. Another example is the schizophrenia-linked gene [[MTHFR]], with murine knockouts showing decreased levels of reelin in the cerebellum.<!--
--> the precise mechanism leading to this is unknown. Another example is the schizophrenia-linked gene [[MTHFR]], with murine knockouts showing decreased levels of reelin in the cerebellum.<!--


--><ref name="pmid15979267">{{cite journal |author=Chen Z, Schwahn BC, Wu Q, He X, Rozen R |title=Postnatal cerebellar defects in mice deficient in methylenetetrahydrofolate reductase |journal=[[Int. J. Dev. Neurosci.]] |volume=23 |issue=5 |pages=465–74 |year=2005 |month=August |pmid=15979267 |doi=10.1016/j.ijdevneu.2005.05.007 }}</ref><!--
--><ref name="pmid15979267">{{cite journal |author=Chen Z, Schwahn BC, Wu Q, He X, Rozen R |title=Postnatal cerebellar defects in mice deficient in methylenetetrahydrofolate reductase |journal=Int. J. Dev. Neurosci. |volume=23 |issue=5 |pages=465–74 |year=2005 |month=August |pmid=15979267 |doi=10.1016/j.ijdevneu.2005.05.007 }}</ref><!--


--> Along the same line, it is worth noting that the gene coding for the subunit [[GRIN2B|NR2B]] that is presumably affected by reelin in the process of NR2B->NR2A developmental change of NMDA receptor composition,<ref name="pmid17881522"/> stands as one of the strongest risk gene candidates.<!--
--> Along the same line, it is worth noting that the gene coding for the subunit [[GRIN2B|NR2B]] that is presumably affected by reelin in the process of NR2B->NR2A developmental change of NMDA receptor composition,<ref name="pmid17881522"/> stands as one of the strongest risk gene candidates.<!--
Line 498: Line 498:


--><ref name="noautism1">Devlin B, Bennett P, Dawson G, Figlewicz DA, Grigorenko EL, McMahon W, Minshew N, Pauls D, Smith M, Spence MA, Rodier PM, Stodgell C, Schellenberg GD; CPEA Genetics Network. (2004) Alleles of a reelin CGG repeat do not convey liability to autism in a sample from the CPEA network. Am J Med Genet B Neuropsychiatr Genet. 2004 Apr 1;126(1):46-50.
--><ref name="noautism1">Devlin B, Bennett P, Dawson G, Figlewicz DA, Grigorenko EL, McMahon W, Minshew N, Pauls D, Smith M, Spence MA, Rodier PM, Stodgell C, Schellenberg GD; CPEA Genetics Network. (2004) Alleles of a reelin CGG repeat do not convey liability to autism in a sample from the CPEA network. Am J Med Genet B Neuropsychiatr Genet. 2004 Apr 1;126(1):46-50.
PMID 15048647</ref><ref name="noautism2">Li J, Nguyen L, Gleason C, Lotspeich L, Spiker D, Risch N, Myers RM.(2004) Lack of evidence for an association between WNT2 and RELN polymorphisms and autism. Am J Med Genet B Neuropsychiatr Genet. 2004 Apr 1;126(1):51-7. PMID 15048648</ref><ref name="pmid18597938">{{cite journal |author=Dutta S, Sinha S, Ghosh S, Chatterjee A, Ahmed S, Usha R |title=Genetic analysis of reelin gene (RELN) SNPs: No association with autism spectrum disorder in the Indian population |journal=[[Neurosci. Lett.]] |volume=441 |issue=1 |pages=56–60 |year=2008 |month=August |pmid=18597938 |doi=10.1016/j.neulet.2008.06.022 }}</ref><!--
PMID 15048647</ref><ref name="noautism2">Li J, Nguyen L, Gleason C, Lotspeich L, Spiker D, Risch N, Myers RM.(2004) Lack of evidence for an association between WNT2 and RELN polymorphisms and autism. Am J Med Genet B Neuropsychiatr Genet. 2004 Apr 1;126(1):51-7. PMID 15048648</ref><ref name="pmid18597938">{{cite journal |author=Dutta S, Sinha S, Ghosh S, Chatterjee A, Ahmed S, Usha R |title=Genetic analysis of reelin gene (RELN) SNPs: No association with autism spectrum disorder in the Indian population |journal=Neurosci. Lett. |volume=441 |issue=1 |pages=56–60 |year=2008 |month=August |pmid=18597938 |doi=10.1016/j.neulet.2008.06.022 }}</ref><!--


--> two other works suggest that the genetic variations of RELN may have an effect.<!--
--> two other works suggest that the genetic variations of RELN may have an effect.<!--
Line 506: Line 506:
--> In one study, a postmortem analysis of five patients showed decrease of reelin expression in the cerebellar cortex.<!--
--> In one study, a postmortem analysis of five patients showed decrease of reelin expression in the cerebellar cortex.<!--


--><ref name="pmid11814262">{{cite journal |author=Fatemi SH, Stary JM, Halt AR, Realmuto GR |title=Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum |journal=[[J Autism Dev Disord]] |volume=31 |issue=6 |pages=529–35 |year=2001 |month=December |pmid=11814262|url=http://www.kluweronline.com/art.pdf?issn=0162-3257&volume=31&page=529 |doi=10.1023/A:1013234708757}}</ref><!--
--><ref name="pmid11814262">{{cite journal |author=Fatemi SH, Stary JM, Halt AR, Realmuto GR |title=Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum |journal=J Autism Dev Disord |volume=31 |issue=6 |pages=529–35 |year=2001 |month=December |pmid=11814262|url= |doi=10.1023/A:1013234708757}}</ref><!--


--> A study conducted in 2002 detected decreased blood levels of reelin in both patients and their relatives.<!--
--> A study conducted in 2002 detected decreased blood levels of reelin in both patients and their relatives.<!--


--><ref name="pmid12363196">{{cite journal |author=Fatemi SH, Stary JM, Egan EA |title=Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder |journal=[[Cell. Mol. Neurobiol.]] |volume=22 |issue=2 |pages=139–52 |year=2002 |month=April |pmid=12363196 |url=http://www.kluweronline.com/art.pdf?issn=0272-4340&volume=22&page=139 |doi=10.1023/A:1019857620251}}</ref>
--><ref name="pmid12363196">{{cite journal |author=Fatemi SH, Stary JM, Egan EA |title=Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder |journal=Cell. Mol. Neurobiol. |volume=22 |issue=2 |pages=139–52 |year=2002 |month=April |pmid=12363196 |url= |doi=10.1023/A:1019857620251}}</ref>


===Temporal lobe epilepsy===
===Temporal lobe epilepsy===
Line 527: Line 527:
--> A large genetic study of 2008 showed that RELN gene variation is associated with an increased risk of Alzheimer's disease in women.<!--
--> A large genetic study of 2008 showed that RELN gene variation is associated with an increased risk of Alzheimer's disease in women.<!--


--><ref name="pmid18599960">{{cite journal |author=Seripa D, Matera MG, Franceschi M, ''et al'' |title=The RELN locus in Alzheimer's disease |journal=[[J. Alzheimers Dis.]] |volume=14 |issue=3 |pages=335–44 |year=2008 |month=July |pmid=18599960 |url=http://iospress.metapress.com/openurl.asp?genre=article&issn=1387-2877&volume=14&issue=3&spage=335}}</ref><!--
--><ref name="pmid18599960">{{cite journal |author=Seripa D, Matera MG, Franceschi M, ''et al'' |title=The RELN locus in Alzheimer's disease |journal=J. Alzheimers Dis. |volume=14 |issue=3 |pages=335–44 |year=2008 |month=July |pmid=18599960 |url=http://iospress.metapress.com/openurl.asp?genre=article&issn=1387-2877&volume=14&issue=3&spage=335}}</ref><!--


--> The number of reelin-producing Cajal-Retzius cells is significantly decreased in first cortical layer of patients.<!--
--> The number of reelin-producing Cajal-Retzius cells is significantly decreased in first cortical layer of patients.<!--


--><ref name="pmid16051543">{{cite journal |author=Baloyannis SJ |title=Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer's disease: a Golgi and electron microscope study |journal=[[Int. J. Neurosci.]] |volume=115 |issue=7 |pages=965–80 |year=2005 |month=July |pmid=16051543 |doi=10.1080/00207450590901396 |url=}}</ref><ref name="pmid17453452">{{cite journal |author=Baloyannis SJ, Costa V, Mauroudis I, Psaroulis D, Manolides SL, Manolides LS |title=Dendritic and spinal pathology in the acoustic cortex in Alzheimer's disease: morphological and morphometric estimation by Golgi technique and electron microscopy |journal=[[Acta Otolaryngol.]] |volume=127 |issue=4 |pages=351–4 |year=2007 |month=April |pmid=17453452 |doi=10.1080/00016480601126986 }}</ref><!--
--><ref name="pmid16051543">{{cite journal |author=Baloyannis SJ |title=Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer's disease: a Golgi and electron microscope study |journal=Int. J. Neurosci. |volume=115 |issue=7 |pages=965–80 |year=2005 |month=July |pmid=16051543 |doi=10.1080/00207450590901396 |url=}}</ref><ref name="pmid17453452">{{cite journal |author=Baloyannis SJ, Costa V, Mauroudis I, Psaroulis D, Manolides SL, Manolides LS |title=Dendritic and spinal pathology in the acoustic cortex in Alzheimer's disease: morphological and morphometric estimation by Golgi technique and electron microscopy |journal=Acta Otolaryngol. |volume=127 |issue=4 |pages=351–4 |year=2007 |month=April |pmid=17453452 |doi=10.1080/00016480601126986 }}</ref><!--


--> Some authors consider the reelin pathway to be a link between the Alzheimer's disease and schizophrenia.<!--
--> Some authors consider the reelin pathway to be a link between the Alzheimer's disease and schizophrenia.<!--
Line 550: Line 550:
--> [[Retinoblastoma]] presents another example of RELN overexpression.<!--
--> [[Retinoblastoma]] presents another example of RELN overexpression.<!--


--><ref name="pmid17615543">{{cite journal |author=Seigel GM, Hackam AS, Ganguly A, Mandell LM, Gonzalez-Fernandez F |title=Human embryonic and neuronal stem cell markers in retinoblastoma |journal=[[Mol. Vis.]] |volume=13 |issue= |pages=823–32 |year=2007 |pmid=17615543 |url=http://www.molvis.org/molvis/v13/a90/}}</ref>
--><ref name="pmid17615543">{{cite journal |author=Seigel GM, Hackam AS, Ganguly A, Mandell LM, Gonzalez-Fernandez F |title=Human embryonic and neuronal stem cell markers in retinoblastoma |journal=Mol. Vis. |volume=13 |issue= |pages=823–32 |year=2007 |pmid=17615543 |url=http://www.molvis.org/molvis/v13/a90/}}</ref>


== Psychotropic medication and reelin expression ==
== Psychotropic medication and reelin expression ==

Revision as of 19:30, 26 August 2008

Template:PBB Reelin is a protein found mainly in the brain, but also in the spinal cord, blood and other body organs and tissues. Reelin is crucial for regulating the processes of neuronal migration and positioning in the developing brain. Besides this important role in early development, reelin continues to work in the adult brain. It modulates the synaptic plasticity by enhancing LTP induction and maintenance.[1][2] It also stimulates dendrite development[3] and regulates the continuing migration of neuroblasts generated in adult neurogenesis sites like subventricular and subgranular zones.

Reelin is implicated in pathogenesis of several brain diseases. Significantly lowered expression of the protein have been found in schizophrenia and psychotic bipolar disorder. Total lack of reelin causes a form of lissencephaly. Reelin also may play a role in Alzheimer's disease, temporal lobe epilepsy, and autism.

Reelin's name comes from the abnormal reeling gait of reeler mice,[4] which were found to have a deficiency of this brain protein and were homozygous for mutation of the RELN gene, which encodes reelin synthesis.

The primary phenotype associated with loss of reelin function is a rough inversion of cortical layers. The mice heterozygous for the reelin gene, while having little neuroanatomical defects, display the endophenotypic traits linked to psychotic disorders.[5]

Video: the reeler mice mutants, first described in 1951 by D.S.Falconer, were later found to lack reelin protein.

Discovery

Normal and Reeler mice brain slices.

Mutant mice provide insight into the underlying molecular mechanisms of the development of the CNS. Useful spontaneous mutations were first identified by scientists interested in motor behavior, and it proved relatively easy to screen littermates for mice that showed difficulties moving around the cage. A number of such mice were found and given descriptive names such as reeler, weaver, lurcher, nervous, and staggerer.

The "reeler" mouse was first described in the 1951 by D.S.Falconer.[4] Histopathological studies in the 1960's revealed that the cerebellum in reeler mice is dramatically decreased in size and the normal laminar organization found in several brain regions is disrupted.[6] The 1970's brought the discovery of cellular layers inversion in the mice neocortex,[7] which attracted more attention to the reeler mutation.

In 1995, the RELN gene was mapped to chromosome 7q22 and sequenced by Gabriella D'Arcangelo and colleagues.[8] Almost immediately, Japanese scientists at Kochi Medical School had successfully created the first monoclonal antibody for reelin, called CR-50.[9] They noted that CR-50 reacted specifically with Cajal-Retzius neurons, whose functional role was unknown until then.

The Reelin receptors, apolipoprotein E receptor 2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR), were discovered serendipitously by Trommsdorff et al, who found that the double knockout mice for ApoER2 and VLDLR, which they generated for another experiment, showed defects in cortical layering similar to that in reeler.[10]

The downstream pathway of Reelin was further clarified using other mutant mice, including yotari and scrambler. These mutants have phenotypes similar to that of reeler but have no mutation in reelin. It was then demonstrated that the mouse disabled homologue 1 (Dab1) gene is responsible for the phenotypes of these mutant mice, as Dab1 protein was absent (yotari) or only barely (scrambler) detectable in these mutants.[11] Targeted disruption of Dab1 also caused a phenotype similar to that of reeler. Pinpointing the DAB1 as a pivotal regulator of the reelin signaling cascade started the tedious process of deciphering its complex interactions.

There followed a series of important findings linking reelin's genetic variation and interactions to schizophrenia, Alzheimer's disease, autism and other highly complex dysfunctions. These and other discoveries, coupled with the perspective of unraveling the evolutionary changes that allowed for the creation of human brain, highly intensified the research. As of 2008, some 13 years after the gene coding the protein was discovered, hundreds of scientific articles address the multiple aspects of its structure and functioning.[12] These aspects have been summarized by the leading researchers in a book called "Reelin Glycoprotein: Structure, Biology and Roles in Health and Disease" that saw print in 2008.[13]

Tissue distribution and secretion

File:Reeler ontogenesis.png
Corticogenesis in a normal (left) and reeler (right) mice

Studies show that Reelin is absent from synaptic vesicles and is secreted via constitutive secretory pathway, being stored in Golgi secretory vesicles.[14] Reelin's release rate is not regulated by depolarization, but strictly depends on its synthesis rate. This relationship is similar to that reported for the secretion of other ECM proteins.

During the brain development, reelin is secreted in the cortex and hippocampus by Cajal-Retzius cells, Cajal cells, and Retzius cells.[15] Reelin-expressing cells in the prenatal and early postnatal brain are predominantly found in the marginal zone (MZ) of the cortex and in the temporary subpial granular layer (SGL), which is manifested to the highest extent in human,[16] and in the hippocampal stratum lacunosum-moleculare and the upper marginal layer of the dentate gyrus.

In the developing cerebellum, Reelin is expressed first in the external granule cell layer (EGL) before the granule cell migration to the internal granule cell layer (IGL).[17]

Peaking just after the birth, the synthesis of reelin then goes down sharply and becomes more diffuse compared with the distinctly laminar expression in the developing brain. In the adult brain, Reelin is expressed by GABA-ergic interneurons of the cortex and glutamatergic cerebellar neurons,[18] and by the few extant Cajal-Retzius cells. Among GABAergic interneurons, Reelin seems to be detected predominantly in those expressing calretinin and calbindin, like bitufted, horizontal, and Martinotti cells, but not parvalbumin-expressing cells, like chandelier or basket neurons.[19][20] Outside the brain, reelin is found in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells.[21] In the liver, reelin is localized in hepatic stellate cells.[22] The expression of Reelin increases when the liver is damaged, and returns to normal following its repair. [23]

Schema of the Reelin protein

In the eyes reelin is secreted by retinal ganglion cells and is also found in the endothelial layer of the cornea.[24] Similar to liver, the expression increases after an injury.

Structure

The structure of two murine reelin repeats as revealed by X-ray crystallography and electron tomography. Yasui et al., 2007,[25] PDB: 2E26​.

Reelin is a secreted extracellular matrix glycoprotein composed of 3461 amino acids with a relative molecular mass of 388 kDa; its structural features allow for an enzymatic activity, making it a serine protease.[26] Murine RELN gene consists of 65 exons spanning approximately 450 kb.[27] One exon, coding for only two amino acids near the protein's C-terminal, undergoes alternative splicing, but the exact functional impact of this is unknown.[13] Two transcription initiation sites and two polyadenilation sites are identified in the gene structure.[27]

The Reelin protein starts with a signaling peptide 27 amino acids in length, followed by a region bearing similarity to F-spondin, marked as "SP" on the scheme, and by a region unique to reelin, marked as "H". Next comes 8 repeats of 300-350 amino acids. These are called reelin repeats and have an EGF motif at their center, dividing each repeat into two subrepeats, A and B. Despite this interruption, the two subdomains make direct contact, resulting in a compact overall structure.[28]

The final Reelin domain contains a highly basic and short C-terminal region (CTR, marked "+") with a length of 32 amino acids. This region is highly conserved, being 100% identical in all investigated mammals. It was thought that CTR is necessary for reelin secretion, because Orleans reeler mutation, which lacks a part of 8th repeat and the whole CTR, is unable to secrete the misshaped protein, leading to its concentration in cytoplasm. However, one recent study has shown that the CTR is not essential for secretion, which is most probably hindered then reelin is cut along one of the repeats.[29]

Reelin is cleaved in vivo at two sites located after domains 2 and 6 - approximately between repeats 2 and 3 and between repeats 6 and 7, resulting in the production of three fragments.[30] This splitting does not decrease the protein's activity, as constructs made of the predicted central fragments (repeats 3–6) bind to lipoprotein receptors, trigger Dab1 phosphorylation and mimic functions of reelin during cortical plate development.[31] Moreover, the processing of reelin by embryonic neurons may be neccessary for proper corticogenesis.[32]

Function

The primary functions of Reelin are the regulation of corticogenesis and neuronal cell positioning in the prenatal period, but the protein is also implicated in a number of other processes, and the research is ongoing.

Reelin is found in numerous tissues and organs, and one could roughly subdivide its functional roles by the time of expression and by localisation of its action.

A number of non-nervous tissues and organs express reelin in the developing organism, with the expression sharply going down after the organ had been formed. The role of the protein here is largely unexplored, because the knockout mice show no major pathology in these organs. In the adult organism the non-neural expression is much less widespread, but goes up sharply when some organs are injured.[24][23] The exact function of reelin upregulation following an injury is still being researched.

Reelin controls the direction of radial glia growth. A fragment of an illustration from Nomura T. et al., 2008.[33] Reelin-expressing cells (red) on C stimulate the growth of green glial fibers, while on B, where the red cells do not express reelin, radial glia is more disarrayed.

On the other hand, reelin's role in the growing CNS is more important and more explored. It promotes the differentiation of progenitor cells into radial glia and affects the orientation of its fibers, which serve as the guides for the migrating neuroblasts.[34] The position of reelin-secreting cell layer is important, because the fibers orient themselves in the direction of its higher concentration.[33]

Mammalian corticogenesis is another process where reelin plays a major role. In this process the temporary layer called preplate is split into the marginal zone on the top and subblate below, and the space between them is populated by neuronal layers in the inside-out pattern. In such an arrangement, where the newly created neurons pass through the settled layers and position themselves one step above, is a distinguishing feature of mammalian brain, in contrast to the evolutionary older reptile cortex, in which layers are positioned in an "outside-in" fashion. When reelin is absent, like in the mutant reeler mouse, the order of cortical layering becomes roughly inverted, with younger neurons finding themselves to be unable to pass the settled layers. Subplate neurons fail to stop and invade the uppermost layer, creating the so-called superplate in which they mix with Cajal-Retzius cells and some cells normally destined for the second layer.

Increased reelin expression changes the morphology of migrating neurons: unlike the round neurons with short branches (C) they assume bipolar shape (D) and attach themselves (E) to the radial glia fibers that are extending in the direction of reelin-expressing cells. Nomura T. et al., 2008.[33]

There is no agreement concerning the role of reelin in the proper positioning of cortical layers. The original hypothesis, that the protein is a stop signal for the migrating cells, is supported by its ability to induce the dissociation,[35] its role in asserting the compact granule cell layer in the hippocampus, and by the fact that migrating neuroblasts evade the reelin-rich areas. But an experiment in which murine corticogenesis went normally despite the malpositioned reelin secreting layer,[36] and lack of evidence that reelin affects the growth cones and leading edges of neurons, caused some additional hypotheses to be proposed. According to one of them, reelin makes the cells more susceptible to some yet undescribed positional signaling cascade.

The protein is thought to act on migrating neuronal precursors and thus controls correct cell positioning in the cortex and other brain structures. The proposed role is one of a dissociation signal for neuronal groups, allowing them to separate and go from tangential chain-migration to radial individual migration.[35] Dissociation detaches migrating neurons from the glial cells that are acting as their guides, converting them into individual cells that can strike out alone to find their final position.

In the adult nervous system, reelin plays an eminent role at the two most active neurogenesis sites, the subventricular zone and the dentate gyrus. In some species, the neuroblasts from the subventricular zone migrate in chains in the rostral migratory stream to reach the olfactory bulb, where reelin dissociates them into individual cells that are able to migrate further individually. They change their mode of migration from tangential to radial, and begin using the radial glia fibers as their guides. In the adult dentate gyrus, reelin provides guidance cues for new neurons that are constantly arriving to the granule cell layer from subgranular zone, keeping the layer compact.[37]

Reelin also plays an important role in the adult brain by modulating cortical pyramidal neuron dendritic spine expression density, the branching of dendrites, and the expression of long-term potentiation[2] as its secretion is continued diffusely by the GABAegric cortical interneurons those origin is traced to the medial ganglionic eminence.

One study suggests that reelin may be the part of the mechanism behind the developmental change in the subunit composition of NMDA receptor, a major player in the memory and neuroplasticity processes. Reelin was shown to increase the mobility of its NR2B subunit.[38]

Evolutionary significance

Cajal-Retzius cells, as drawn by Cajal in 1891. The development of a distinct layer of these reelin-secreting cells played a major role in brain evolution.
Neuronal development: mammals (left) and avians (right) have different patterns of reelin expression (pink). Nomura T. et al., 2008.[33]

Reelin-DAB1 interactions could have played a key role in the structural evolution of the cortex that evolved from a single layer in the common amniote predeccessor into multiple-layered cortex of contemporary mammals.[39] Research shows that reelin expression goes up as the cortex becomes more complex, reaching the maximum in the human brain in which the reelin-secreting Cajal-Retzius cells have significantly more complex axonal arbour.[40] Reelin is present in the telencephalon of all the vertebrates studied so far, but the pattern of expression is widely differential. For example, in zebra fish there are no Cajal-Retzius cells and the protein is being secreted by other neurons.[41][42] These cells do not form a dedicated layer in amphibians, and radial migration in their brains is very weak.[41]

As the cortex becomes more complex and convoluted, migration along the radial glia fibers becomes more important for the proper lamination. The emergence of a distinct reelin-secreting layer is thought to play an important role in this evolution.[33] There are conflicting data concerning the importance of this layer,[36] and these are explained in the literature either by the existence of an additional signaling positional mechanism that interacts with the reelin cascade,[36] or by the assumption that mice that are used in such experiments have reduntant secretion of reelin[43] compared with more localized synthesis in the human brain.[16]

Cajal-Retzius cells, most of which disappear around the time of birth, coexpress reelin with the HAR1 gene that is thought to have undergone the most significant evolutionary change in humans compared with chimpanzee, being the most «evolutionary accelerated» of the genes from the human accelerated regions discovered in 2006.[44] There is evidence of an ongoing evolution in the reelin pathway: DAB1 gene variant was described in 2007 that has spread recently in the Chinese but not in another populations.[45][46]

Mechanism of action

The main reelin signaling cascade (ApoER2 and VLDLR) and its interaction with LIS1. Zhang et al., 2008[47]

The main action of reelin is apparently conducted through the two members of Low density lipoprotein receptor gene family, VLDLR and the ApoER2. It also has been shown that alpha-3-beta-1 integrin receptor binds the N-terminal region of reelin, a site distinct from the region of reelin shown to associate with VLDLR/ApoER2.[48] The proposal that the protocadherin CNR1 behaves as a Reelin receptor[49] has been disproven.[31]

Reelin receptors are present on both neurons and glial cells, with one study showing that the radial glia express the same amount of ApoER2 but being ten times less rich in VLDLR.[34] One study suggests that beta-1 integrin receptors on glial cells play more important role in neuronal layering than the same receptors on the migrating neuroblasts.[50]

The intracellular adaptor DAB1 binds to the VLDLR and ApoER2 through an NPxY motif and is involved in transmission of Reelin signals through these lipoprotein receptors. It becomes phosphorylated and apparently stimulates the actin cytoskeleton to change its shape, affecting the proportion of integrin receptors on the cell surface, which leads to the change in adhesion. Phosphorylation of DAB1 leads to its ubiquitination and subsequent degradation, and this explains the hightened levels of DAB1 in the absense of reelin.[51] Such negative feedback is thought to be important for proper cortical lamination.[52]

Reelin stimulates the progenitor cells to differentiate into radial glia, inducing the expression of radial glial marker BLBP by affecting the NOTCH1 cascade. A fragment of an illustration from Keilani et al., 2008.[53]

A protein having an important role in lissencephaly and accordingly called LIS1 (PAFAH1b1), was shown to interact with the intracellular segment of VLDLR, thus reacting to the activation of reelin pathway.[47]

The two main reelin receptors seem to have slightly different roles: according to one study, VLDLR conducts the stop signal, while ApoER2 is essential for the migration of late-born neocortical neurons.[54]

Reelin molecules have been shown[55][56] to form a large protein complex, a disulfide-linked homodimer. If the homodimer fails to form, efficient tyrosine phosphorylation of DAB1 in vitro fails. But reelin itself can cut the peptide bonds holding other proteins together, being a serine protease,[26] and this may affect the cellular adhesion and migration processes.

Reelin-dependent strengthening of long-term potentiation is caused by ApoER2 interaction with NMDA receptor. This interaction happens when ApoER2 has a region coded by exon 19. ApoER2 gene is alternatively spliced, with the exon 19-containing variant more actively produced during periods of activity.[57] According to one study, the hippocampal reelin expression rapidly goes up when there is need to store a memory, as demethylases open up the RELN gene.[58]

The activation of dendrite growth by reelin is apparently conducted throuth Src family kinases and is dependent upon the expression of Crk family proteins.[59]

One study shows that reelin somehow activates the signaling cascade of Notch-1, inducing the expression of FABP7 and prompting progenitor cells to assume radial glial phenotype.[53]

One study shows that proper corticogenesis in vivo is highly dependent upon reelin being processed by embrionic neurons,[32] which are thought to secrete some as yet unidentified metalloproteinases that free the central signal-competent part of the protein. Some other unknown proteolytic mechanisms may also play a role.[60] It is supposed that full-sized reelin stucks to the extracellular matrix fibers on the higher levels, and the central fragments, as they are being freed up by the breaking up of reelin, are able to permeate into the lower levels.[32] It is possible that as neuroblasts reach the higher levels they stop their migration either because of the heightened combined expression of all forms of reelin, or due to the peculiar mode of action of the full-sized reelin molecules and its homodimers.[13]

Role in brain pathology

Lissencephaly

Disruptions of the RELN gene are considered to be the cause of the rare form of lissencephaly with cerebellar hypoplasia called Norman-Roberts syndrome.[61][62] The mutations disrupt splicing of RELN cDNA, resulting in low or undetectable amounts of reelin protein. The phenotype in these patients was characterized by hypotonia, ataxia, and developmental delay, with lack of unsupported sitting and profound mental retardation with little or no language development. Seizures and congenital lymphedema were also present. A novel chromosomal translocation causing the syndrome was described in 2007.[63] The mutations affecting reelin in human are usually associated with consanguineous marriage.

Schizophrenia

Reduced expression of reelin and its mRNA levels in the brains of schizophrenia sufferers had been reported in 1998[64] and 2000[65] and independently confirmed in the postmortem studies of hippocampus,[66] cerebellum,[67] basal ganglia,[68] and in the cortex studies.[69][70] The reduction may reach up to 50% in some brain regions and is coupled with reduced expression of GAD-67 enzyme,[67] which catalyses the transition of glutamate to GABA. Blood levels of reelin and its isoforms are also altered in schizophrenia, along with other mood disorders, according to one study.[71] Reduced reelin mRNA prefrontal expression in schizophrenia was found to be the most statistically relevant disturbance found in the multicenter study conducted in 14 separate laboratories in 2001 by Stanley Foundation Neuropathology Consortium.[72]

Epigenetic hypermethylation of DNA in schizophrenia patients is proposed as a cause of the reduction,[73][74] in agreement with the observations dating from the 1960's that administration of methionine to schizophrenic patients results in a profound exacerbation of schizophrenia symptoms in sixty to seventy percent of patients.[75][76][77][78] The proposed mechanism is a part of the "epigenetic hypothesis for schizophrenia pathophysiology" formulated in 2008.[79] A postmortem study comparing DNMT1 and Reelin mRNA expression in cortical layers I and V of schizophrenic patients and normal controls demonstrated that in the layer V both DNMT1 and Reelin levels were normal, while in the layer I DNMT1 was threefold higher, probably leading to the twofold decrease in the Reelin expression.[80] There is evidence that the change is selective, and DNMT1 is overexpressed in reelin-secreting GABAegric neurons but not in their glutamatergic neighbours.[81][82] Methylation inhibitors and histone deacetylase inhibitors, such as valproic acid, increase reelin mRNA levels,[83][84][85] while L-methionine treatment downregulates the phenotypic expression of reelin.[86] One study indicated the upregulation of histone deacetylase HDAC1 in the hippocampi of patients.[87] Histone deacetylases supress gene promoters; hyperacetylation of hystones was shown in murine models to demethylate the promoters of both reelin and GAD67.[88] DNMT1 inhibitors in animals have been shown to increase the expression of both reelin and GAD67.[89] As one study shows, SAM concentration in patients' prefrontal cortex is twice as high as in the cortices of non-affected people.[90] SAM, being a methyl group donor neccessary for DNMT activity, could further shift epigenetic control of gene expression.

The factors mentioned above serve to corroborate the epigenetic hypothesis. But it is worth mentioning that in contrast with initial data, two recent studies have failed to confirm the RELN hypermethylation,[91][92] and psychotropic medication could in itself affect the reelin expression in patients (see below).

Beyond the epigenetic evidence there is a study showing the change in reelin blood levels in schizophrenia and mood disorders.[71]

Other interesting findings probably linking reelin pathway to developmental hypotheses of schizophrenia are noted in the studies on mice that are either prenatally infected with influenza virus[93] or have their immune system activated artificially during pregnancy.[94] The Cajal-Retzius cells in the newborns secrete significantly less reelin despite keeping their expression of calretinin and nNos within normal range. These data run in parrallel with the findings of increased risk of schizophrenia in humans after a prenatal infection during the second trimester.

Chromosome region 7q22 that harbours the RELN gene is associated with schizophrenia,[95] and the gene itself was associated with the disease in a large study that found the polymorphism rs7341475 to increase the risk of the disease in women, but not in men. The women that have the SNP are about 1.4 times more likely to get ill, according to the study.[96] Allelic variations of RELN have also been correlated with working memory, memory and executive functioning in nuclear families where one of the members suffers from schizophrenia.[95]

One study showed that patients have decreased levels of one of reelin receptors, VLDLR, in the peripheral lymphocytes.[97] After six months of antipsychotic therapy the expression went up; according to authors, peripheral VLRLR levels may serve as a reliable peripheral biomarker of schizophrenia.[97]

Considering the role of reelin in promoting dendritogenesis,[3][59] suggestions were made that the localized dendritic spine deficit observed in schizophrenia [98][99] could be in part connected with the downregulation of reelin.[100][101]

Reelin pathway could also be linked to schizophrenia and other psychotic disorders through its interaction with risk genes. One example is the neuronal transcription factor NPAS3, disruption of which is linked to schizophrenia[102] and learning disability. Knockout mice lacking NPAS3 or the similar protein NPAS1 have significantly lower levels of reelin;[103] the precise mechanism leading to this is unknown. Another example is the schizophrenia-linked gene MTHFR, with murine knockouts showing decreased levels of reelin in the cerebellum.[104] Along the same line, it is worth noting that the gene coding for the subunit NR2B that is presumably affected by reelin in the process of NR2B->NR2A developmental change of NMDA receptor composition,[38] stands as one of the strongest risk gene candidates.[105]

The heterozygous reeler mouse, which is haploinsufficient for the RELN gene, shares several neurochemical and behavioral abnormalities with schizophrenia and bipolar disorder,[106] but is considered not suitable for use as a genetic mouse model of schizophrenia.[107]

Bipolar disorder

Decrease in RELN expression with concurrent upregulation of DNMT1 is typical of bipolar disorder with psychosis, but is not characteristic of patients with major depression without psychosis, wich could speak of specific association of the change with psychoses.[65] One study suggests that unlike in schizophrenia, such changes are found only in the cortex and do not affect the deeper structures in psychotic bipolar patients, as their basal ganglia were found to have the normal levels of DNMT1 and subsequently both the reelin and GAD67 levels were within the normal range.[68]

Autism

The role of reelin in autism is not decided yet: three studies provide no link,[108][109][110] two other works suggest that the genetic variations of RELN may have an effect.[111][112] In one study, a postmortem analysis of five patients showed decrease of reelin expression in the cerebellar cortex.[113] A study conducted in 2002 detected decreased blood levels of reelin in both patients and their relatives.[114]

Temporal lobe epilepsy

Decreased reelin expression in the hippocampal tissue samples from patients with temporal lobe epilepsy was found to be directly correlated with the extent of granule cell dispersion, a major feature of the disease that is noted in 45%-73% of patients.[115][116] According to one study, prolonged seizures in a rat model of mesial temporal lobe epilepsy have led to the loss of reelin-expressing interneurons and subsequent ectopic chain migration and aberrant integration of newborn dentate granule cells. Without reelin, the chain-migrating neuroblasts failed to detach properly.[117]

Alzheimer's disease

According to one study, reelin expression and glycosylation patterns are altered in Alzheimer's disease. In the cortex of the patients, reelin levels were 40% higher compared with controls, but the cerebellar levels of the protein remain normal in the same patients.[118] This finding is in agreement with an earlier study showing the presence of Reelin associated with amyloid plaques in a transgenic AD mouse model.[119] A large genetic study of 2008 showed that RELN gene variation is associated with an increased risk of Alzheimer's disease in women.[120] The number of reelin-producing Cajal-Retzius cells is significantly decreased in first cortical layer of patients.[121][122] Some authors consider the reelin pathway to be a link between the Alzheimer's disease and schizophrenia.[123]

Cancer

DNA methylation patterns are often changed in tumours, and RELN gene could be affected: according to one study, in the pancreatic cancer the expression is suppressed, along with other reelin pathway components.[124] On the contrary, in prostate cancer the RELN expression is excessive and correlates with Gleason score.[125] Retinoblastoma presents another example of RELN overexpression.[126]

Psychotropic medication and reelin expression

As reelin is being implicated in a number of brain disorders and its expression is usually measured posthumously, assessing the possible medication effects is important. Fatemi et al conducted a study in which RELN mRNA and reelin protein levels were measured in rat prefrontal cortex following a 21-day of intraperitoneal injections.[13]

Clozapine Fluoxetine Haloperidol Lithium Olanzapine Valproic Acid
Reelin: protein down no change down down up no change
mRNA up up down up up down

References

  1. ^ Weeber EJ, Beffert U, Jones C; et al. (2002). "Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning". J. Biol. Chem. 277 (42): 39944–52. doi:10.1074/jbc.M205147200. PMID 12167620. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)W
  2. ^ a b D'Arcangelo G (2005). "Apoer2: a reelin receptor to remember". Neuron. 47 (4): 471–3. doi:10.1016/j.neuron.2005.08.001. PMID 16102527. {{cite journal}}: Unknown parameter |month= ignored (help)
  3. ^ a b Niu S, Renfro A, Quattrocchi CC, Sheldon M, D'Arcangelo G (2004). "Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway". Neuron. 41 (1): 71–84. doi:10.1016/S0896-6273(03)00819-5. PMID 14715136. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  4. ^ a b Falconer DS (1951) 2 new mutants, trembler and reeler, with neurological actions in the house mouse (mus-musculus l) Journal of Genetics 50 (2): 192-201 [1]
  5. ^ Tueting P, Doueiri MS, Guidotti A, Davis JM, Costa E (2006). "Reelin down-regulation in mice and psychosis endophenotypes". Neurosci Biobehav Rev. 30 (8): 1065–77. doi:10.1016/j.neubiorev.2006.04.001. PMID 16769115.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Hamburgh M (1963). "Analysis of the postnatal developmental effects of "reeler", a neurological mutation in mice. A study in developmental genetics". Dev. Biol. 19: 165–85. doi:10.1016/0012-1606(63)90040-X. PMID 14069672. {{cite journal}}: Unknown parameter |month= ignored (help)
  7. ^ Caviness VS (1976). "Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse". J. Comp. Neurol. 170 (4): 435–47. doi:10.1002/cne.901700404. PMID 1002868. {{cite journal}}: Unknown parameter |month= ignored (help)
  8. ^ D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995). "A protein related to extracellular matrix proteins deleted in the mouse mutant reeler". Nature. 374 (6524): 719–23. doi:10.1038/374719a0. PMID 7715726. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  9. ^ Ogawa M, Miyata T, Nakajima K; et al. (1995). "The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons". Neuron. 14 (5): 899–912. doi:10.1016/0896-6273(95)90329-1. PMID 7748558. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  10. ^ Trommsdorff M, Gotthardt M, Hiesberger T; et al. (1999). "Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2". Cell. 97 (6): 689–701. doi:10.1016/S0092-8674(00)80782-5. PMID 10380922. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Sheldon M, Rice DS, D'Arcangelo G; et al. (1997). "Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice". Nature. 389 (6652): 730–3. doi:10.1038/39601. PMID 9338784. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. ^ "Reelin" mentioned in the titles of scientific literature - a search in the Google Scholar
  13. ^ a b c d Hossein S. Fatemi, ed. (2008). Reelin Glycoprotein: Structure, Biology and Roles in Health and Disease. Springer. p. 444. ISBN 978-0-387-76760-4.
  14. ^ Lacor PN, Grayson DR, Auta J, Sugaya I, Costa E, Guidotti A (2000). "Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3556–61. doi:10.1073/pnas.050589597. PMC 16278. PMID 10725375. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ Meyer G, Goffinet AM, Fairén A (1999). "What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex". Cereb. Cortex. 9 (8): 765–75. doi:10.1093/cercor/9.8.765. PMID 10600995. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  16. ^ a b Meyer G, Goffinet AM (1998). "Prenatal development of reelin-immunoreactive neurons in the human neocortex". J. Comp. Neurol. 397 (1): 29–40. doi:10.1002/(SICI)1096-9861(19980720)397:1. PMID 9671277. {{cite journal}}: Unknown parameter |doi_brokendate= ignored (|doi-broken-date= suggested) (help); Unknown parameter |month= ignored (help) Cite error: The named reference "pmid9671277" was defined multiple times with different content (see the help page).
  17. ^ Schiffmann SN, Bernier B, Goffinet AM (1997). "Reelin mRNA expression during mouse brain development". Eur. J. Neurosci. 9 (5): 1055–71. doi:10.1111/j.1460-9568.1997.tb01456.x. PMID 9182958. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  18. ^ Pesold C, Impagnatiello F, Pisu MG; et al. (1998). "Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats". Proc. Natl. Acad. Sci. U.S.A. 95 (6): 3221–6. doi:10.1073/pnas.95.6.3221. PMC 19723. PMID 9501244. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  19. ^ Alcántara S, Ruiz M, D'Arcangelo G; et al. (1998). "Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse". J. Neurosci. 18 (19): 7779–99. PMID 9742148. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  20. ^ Pesold C, Liu WS, Guidotti A, Costa E, Caruncho HJ (1999). "Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression". Proc. Natl. Acad. Sci. U.S.A. 96 (6): 3217–22. doi:10.1073/pnas.96.6.3217. PMC 15922. PMID 10077664. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  21. ^ Smalheiser NR, Costa E, Guidotti A; et al. (2000). "Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells". Proc. Natl. Acad. Sci. U.S.A. 97 (3): 1281–6. doi:10.1073/pnas.97.3.1281. PMC 15597. PMID 10655522. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  22. ^ Samama B, Boehm N (2005). "Reelin immunoreactivity in lymphatics and liver during development and adult life". Anat Rec a Discov Mol Cell Evol Biol. 285 (1): 595–9. doi:10.1002/ar.a.20202. PMID 15912522. {{cite journal}}: Unknown parameter |month= ignored (help)
  23. ^ a b Kobold D, Grundmann A, Piscaglia F; et al. (2002). "Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts". J. Hepatol. 36 (5): 607–13. doi:10.1016/S0168-8278(02)00050-8. PMID 11983443. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  24. ^ a b Pulido JS, Sugaya I, Comstock J, Sugaya K (2007). "Reelin expression is upregulated following ocular tissue injury". Graefes Arch. Clin. Exp. Ophthalmol. 245 (6): 889–93. doi:10.1007/s00417-006-0458-4. PMID 17120005. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  25. ^ Yasui N, Nogi T, Kitao T, Nakano Y, Hattori M, Takagi J (2007). "Structure of a receptor-binding fragment of reelin and mutational analysis reveal a recognition mechanism similar to endocytic receptors". Proc. Natl. Acad. Sci. U.S.A. 104 (24): 9988–93. doi:10.1073/pnas.0700438104. PMC 1891246. PMID 17548821. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  26. ^ a b Quattrocchi CC, Wannenes F, Persico AM, Ciafré SA, D'Arcangelo G, Farace MG, Keller F. (2002). "Reelin is a serine protease of the extracellular matrix". J. Biol. Chem. 277 (1): 303–9. doi:10.1074/jbc.M106996200. PMID 11689558. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  27. ^ a b Royaux I, Lambert de Rouvroit C, D'Arcangelo G, Demirov D, Goffinet AM (1997). "Genomic organization of the mouse reelin gene". Genomics. 46 (2): 240–50. doi:10.1006/geno.1997.4983. PMID 9417911. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  28. ^ Nogi T, Yasui N, Hattori M, Iwasaki K, Takagi J (2006). "Structure of a signaling-competent reelin fragment revealed by X-ray crystallography and electron tomography". EMBO J. 25 (15): 3675–83. doi:10.1038/sj.emboj.7601240. PMC 1538547. PMID 16858396. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  29. ^ Nakano Y, Kohno T, Hibi T; et al. (2007). "The extremely conserved C-terminal region of Reelin is not necessary for secretion but is required for efficient activation of downstream signaling". J. Biol. Chem. 282 (28): 20544–52. doi:10.1074/jbc.M702300200. PMID 17504759. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  30. ^ Lambert de Rouvroit C, de Bergeyck V, Cortvrindt C, Bar I, Eeckhout Y, Goffinet AM (1999). "Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase". Exp. Neurol. 156 (1): 214–7. doi:10.1006/exnr.1998.7007. PMID 10192793. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  31. ^ a b Jossin Y, Ignatova N, Hiesberger T, Herz J, Lambert de Rouvroit C, Goffinet AM (2004). "The central fragment of Reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development". J. Neurosci. 24 (2): 514–21. doi:10.1523/JNEUROSCI.3408-03.2004. PMID 14724251. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  32. ^ a b c Jossin Y, Gui L, Goffinet AM (2007). "Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons". J. Neurosci. 27 (16): 4243–52. doi:10.1523/JNEUROSCI.0023-07.2007. PMID 17442808. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  33. ^ a b c d e Nomura T, Takahashi M, Hara Y, Osumi N (2008). "Patterns of neurogenesis and amplitude of Reelin expression are essential for making a mammalian-type cortex". PLoS ONE. 3 (1): e1454. doi:10.1371/journal.pone.0001454. PMC 2175532. PMID 18197264.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  34. ^ a b Hartfuss E, Förster E, Bock HH; et al. (2003). "Reelin signaling directly affects radial glia morphology and biochemical maturation". Development. 130 (19): 4597–609. doi:10.1242/dev.00654. PMID 12925587. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  35. ^ a b Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002). "Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis". Nat. Neurosci. 5 (10): 939–45. doi:10.1038/nn923. PMID 12244323. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  36. ^ a b c Yoshida M, Assimacopoulos S, Jones KR, Grove EA (2006). "Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order". Development. 133 (3): 537–45. doi:10.1242/dev.02209. PMID 16410414. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  37. ^ Frotscher M, Haas CA, Förster E (2003). "Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold". Cereb. Cortex. 13 (6): 634–40. doi:10.1093/cercor/13.6.634. PMID 12764039. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  38. ^ a b Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007). "NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin". J. Neurosci. 27 (38): 10165–75. doi:10.1523/JNEUROSCI.1772-07.2007. PMID 17881522.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Bar I, Lambert de Rouvroit C, Goffinet AM (2000). "The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway". Trends Neurosci. 23 (12): 633–8. doi:10.1016/S0166-2236(00)01675-1. PMID 11137154. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  40. ^ Molnár Z, Métin C, Stoykova A; et al. (2006). "Comparative aspects of cerebral cortical development". Eur. J. Neurosci. 23 (4): 921–34. doi:10.1111/j.1460-9568.2006.04611.x. PMC 1931431. PMID 16519657. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  41. ^ a b Pérez-García CG, González-Delgado FJ, Suárez-Solá ML; et al. (2001). "Reelin-immunoreactive neurons in the adult vertebrate pallium". J. Chem. Neuroanat. 21 (1): 41–51. doi:10.1016/S0891-0618(00)00104-6. PMID 11173219. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  42. ^ Costagli A, Kapsimali M, Wilson SW, Mione M (2002). "Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system". J. Comp. Neurol. 450 (1): 73–93. doi:10.1002/cne.10292. PMID 12124768. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  43. ^ Goffinet AM (2006). "What makes us human? A biased view from the perspective of comparative embryology and mouse genetics". J Biomed Discov Collab. 1: 16. doi:10.1186/1747-5333-1-13. PMC 1769396. PMID 17132178.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  44. ^ Pollard KS, Salama SR, Lambert N; et al. (2006). "An RNA gene expressed during cortical development evolved rapidly in humans". Nature. 443 (7108): 167–72. doi:10.1038/nature05113. PMID 16915236. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  45. ^ Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R (2007). "Localizing Recent Adaptive Evolution in the Human Genome". PLoS Genetics. 3 (6): e90. doi:10.1371/journal.pgen.0030090. PMID 17542651.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  46. ^ Wade N (2007-06-26). "Humans Have Spread Globally, and Evolved Locally". Science. New York Times. Retrieved 2008-08-23. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  47. ^ a b Zhang G, Assadi AH, McNeil RS, Beffert U, Wynshaw-Boris A, Herz J, Clark GD, D’Arcangelo G. (2007). "The Pafah1b complex interacts with the Reelin receptor VLDLR". PLoS ONE. 2 (2): e252. doi:10.1371/journal.pone.0000252. PMC 1800349. PMID 17330141.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  48. ^ Schmid RS, Jo R, Shelton S, Kreidberg JA, Anton ES (2005). "Reelin, integrin and DAB1 interactions during embryonic cerebral cortical development". Cereb. Cortex. 15 (10): 1632–6. doi:10.1093/cercor/bhi041. PMID 15703255. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  49. ^ Senzaki K, Ogawa M, Yagi T (1999). "Proteins of the CNR family are multiple receptors for Reelin". Cell. 99 (6): 635–47. doi:10.1016/S0092-8674(00)81552-4. PMID 10612399. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  50. ^ Belvindrah R, Graus-Porta D, Goebbels S, Nave KA, Müller U (2007). "Beta1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex". J. Neurosci. 27 (50): 13854–65. doi:10.1523/JNEUROSCI.4494-07.2007. PMID 18077697. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  51. ^ Feng L, Allen NS, Simo S, Cooper JA (2007). "Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development". Genes Dev. 21 (21): 2717–30. doi:10.1101/gad.1604207. PMC 2045127. PMID 17974915. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  52. ^ Kerjan G, Gleeson JG (2007). "A missed exit: Reelin sets in motion Dab1 polyubiquitination to put the break on neuronal migration". Genes Dev. 21 (22): 2850–4. doi:10.1101/gad.1622907. PMID 18006681. {{cite journal}}: Unknown parameter |month= ignored (help)
  53. ^ a b Keilani S, Sugaya K (2008). "Reelin induces a radial glial phenotype in human neural progenitor cells by activation of Notch-1". BMC Dev. Biol. 8 (1): 69. doi:10.1186/1471-213X-8-69. PMID 18593473. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  54. ^ Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M (2007). "Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons". Development. 134 (21): 3883–91. doi:10.1242/dev.005447. PMID 17913789.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  55. ^ Utsunomiya-Tate N, Kubo K, Tate S; et al. (2000). "Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody". Proc. Natl. Acad. Sci. U.S.A. 97 (17): 9729–34. doi:10.1073/pnas.160272497. PMC 16933. PMID 10920200. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  56. ^ Kubo K, Mikoshiba K, Nakajima K (2002). "Secreted Reelin molecules form homodimers". Neurosci. Res. 43 (4): 381–8. doi:10.1016/S0168-0102(02)00068-8. PMID 12135781. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  57. ^ Beffert U, Weeber EJ, Durudas A; et al. (2005). "Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2" (PDF). Neuron. 47 (4): 567–79. doi:10.1016/j.neuron.2005.07.007. PMID 16102539. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  58. ^ Miller CA, Sweatt JD (2007). "Covalent modification of DNA regulates memory formation". Neuron. 53 (6): 857–69. doi:10.1016/j.neuron.2007.02.022. PMID 17359920. {{cite journal}}: Unknown parameter |month= ignored (help)
  59. ^ a b Matsuki T, Pramatarova A, Howell BW (2008). "Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis". J. Cell. Sci. 121: 1869. doi:10.1242/jcs.027334. PMID 18477607. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  60. ^ Lugli G, Krueger JM, Davis JM, Persico AM, Keller F, Smalheiser NR (2003). "Methodological factors influencing measurement and processing of plasma reelin in humans". BMC Biochem. 4: 9. doi:10.1186/1471-2091-4-9. PMC 200967. PMID 12959647. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  61. ^ Hong SE, Shugart YY, Huang DT; et al. (2000). "Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations". Nat. Genet. 26 (1): 93–6. doi:10.1038/79246. PMID 10973257. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  62. ^ Crino P (2001). "New RELN Mutation Associated with Lissencephaly and Epilepsy". Epilepsy Curr. 1 (2): 72. doi:10.1046/j.1535-7597.2001.00017.x. PMC 320825. PMID 15309195. {{cite journal}}: Unknown parameter |month= ignored (help)
  63. ^ Zaki M, Shehab M, El-Aleem AA; et al. (2007). "Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation". Am. J. Med. Genet. A. 143A (9): 939–44. doi:10.1002/ajmg.a.31667. PMID 17431900. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  64. ^ Impagnatiello F, Guidotti AR, Pesold C; et al. (1998). "A decrease of reelin expression as a putative vulnerability factor in schizophrenia". Proc. Natl. Acad. Sci. U.S.A. 95 (26): 15718–23. doi:10.1073/pnas.95.26.15718. PMC 28110. PMID 9861036. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  65. ^ a b Guidotti A, Auta J, Davis JM; et al. (2000). "Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study". Arch. Gen. Psychiatry. 57 (11): 1061–9. doi:10.1001/archpsyc.57.11.1061. PMID 11074872. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  66. ^ Fatemi SH, Earle JA, McMenomy T (2000). "Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression". Mol. Psychiatry. 5 (6): 654–63, 571. doi:10.1038/sj.mp.4000783. PMID 11126396. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  67. ^ a b Fatemi SH, Hossein Fatemi S, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005). "GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum". Schizophr. Res. 72 (2–3): 109–22. doi:10.1016/j.schres.2004.02.017. PMID 15560956. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  68. ^ a b Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, Guidotti A, Davis JM, Costa E (2007). "Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder". Schizophr. Res. 91 (1–3): 51–61. doi:10.1016/j.schres.2006.11.029. PMC 1876737. PMID 17270400. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  69. ^ Eastwood SL, Harrison PJ (2003). "Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis". Mol. Psychiatry. 8 (9): 769, 821–31. doi:10.1038/sj.mp.4001371. PMID 12931209. {{cite journal}}: Unknown parameter |month= ignored (help)
  70. ^ Abdolmaleky HM, Cheng KH, Russo A; et al. (2005). "Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report". Am. J. Med. Genet. B Neuropsychiatr. Genet. 134B (1): 60–6. doi:10.1002/ajmg.b.30140. PMID 15717292. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  71. ^ a b Fatemi SH, Kroll JL, Stary JM (2001). "Altered levels of Reelin and its isoforms in schizophrenia and mood disorders". Neuroreport. 12 (15): 3209–15. doi:10.1097/00001756-200110290-00014. PMID 11711858. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) Cite error: The named reference "fatemi_blood_reelin" was defined multiple times with different content (see the help page).
  72. ^ Knable MB, Torrey EF, Webster MJ, Bartko JJ (2001). "Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium". Brain Res. Bull. 55 (5): 651–9. doi:10.1016/S0361-9230(01)00521-4. PMID 11576762. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  73. ^ Grayson DR, Jia X, Chen Y; et al. (2005). "Reelin promoter hypermethylation in schizophrenia". Proc. Natl. Acad. Sci. U.S.A. 102 (26): 9341–6. doi:10.1073/pnas.0503736102. PMC 1166626. PMID 15961543. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  74. ^ Dong E, Agis-Balboa RC, Simonini MV, Grayson DR, Costa E, Guidotti A (2005). "Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia". Proc. Natl. Acad. Sci. U.S.A. 102 (35): 12578–83. doi:10.1073/pnas.0505394102. PMC 1194936. PMID 16113080. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  75. ^ Pollin W, Cardon PV, Kety SS (1961). "Effects of amino acid feedings in schizophrenic patients treated with iproniazid". Science (journal). 133: 104–5. doi:10.1126/science.133.3446.104. PMID 13736870. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  76. ^ Brune GG, Himwich HE (1962). "Effects of methionine loading on the behavior of schizophrenic patients". J. Nerv. Ment. Dis. 134: 447–50. PMID 13873983. {{cite journal}}: Unknown parameter |month= ignored (help)
  77. ^ Park L, Baldessarini RJ, Kety SS (1965). "Effects of methionine ingestion in chronic schizophrenia patients treated with monoamine oxidase inhibitors". Arch. Gen. Psychiatry. 12: 346–51. PMID 14258360. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  78. ^ Antun FT, Burnett GB, Cooper AJ, Daly RJ, Smythies JR, Zealley AK (1971). "The effects of L-methionine (without MAOI) in schizophrenia". J Psychiatr Res. 8 (2): 63–71. doi:10.1016/0022-3956(71)90009-4. PMID 4932991. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  79. ^ Grayson DR, Guidotti A, Costa E (2008-01-17). "Current Hypotheses". Schizophrenia Research Forum. schizophreniaforum.org. Retrieved 2008-08-23. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)CS1 maint: multiple names: authors list (link)
  80. ^ Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A (2007). "Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection". Mol. Psychiatry. 12 (4): 385–97. doi:10.1038/sj.mp.4001954. PMID 17264840. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  81. ^ Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, Guidotti A, Costa E (2004). "DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains". Proc. Natl. Acad. Sci. U.S.A. 101 (1): 348–53. doi:10.1073/pnas.2637013100. PMC 314188. PMID 14684836. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  82. ^ Veldic M, Guidotti A, Maloku E, Davis JM, Costa E (2005). "In psychosis, cortical interneurons overexpress DNA-methyltransferase 1". Proc. Natl. Acad. Sci. U.S.A. 102 (6): 2152–7. doi:10.1073/pnas.0409665102. PMC 548582. PMID 15684088. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  83. ^ Tremolizzo L, Doueiri MS, Dong E; et al. (2005). "Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice". Biol. Psychiatry. 57 (5): 500–9. doi:10.1016/j.biopsych.2004.11.046. PMID 15737665. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  84. ^ Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR (2002). "On the epigenetic regulation of the human reelin promoter". Nucleic Acids Res. 30 (13): 2930–9. doi:10.1093/nar/gkf401. PMC 117056. PMID 12087179. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  85. ^ Mitchell CP, Chen Y, Kundakovic M, Costa E, Grayson DR (2005). "Histone deacetylase inhibitors decrease reelin promoter methylation in vitro". J. Neurochem. 93 (2): 483–92. doi:10.1111/j.1471-4159.2005.03040.x. PMID 15816871. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  86. ^ Tremolizzo L, Carboni G, Ruzicka WB; et al. (2002). "An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 17095–100. doi:10.1073/pnas.262658999. PMC 139275. PMID 12481028. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  87. ^ Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007). "Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars". Proc. Natl. Acad. Sci. U.S.A. 104 (24): 10164–9. doi:10.1073/pnas.0703806104. PMC 1888575. PMID 17553960. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  88. ^ Dong E, Guidotti A, Grayson DR, Costa E (2007). "Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters". Proc. Natl. Acad. Sci. U.S.A. 104 (11): 4676–81. doi:10.1073/pnas.0700529104. PMC 1815468. PMID 17360583. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  89. ^ Kundakovic M, Chen Y, Costa E, Grayson DR (2007). "DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes". Mol. Pharmacol. 71 (3): 644–53. doi:10.1124/mol.106.030635. PMID 17065238. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  90. ^ Guidotti A, Ruzicka W, Grayson DR; et al. (2007). "S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis". Neuroreport. 18 (1): 57–60. doi:10.1097/WNR.0b013e32800fefd7. PMID 17259861. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  91. ^ Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, Kato T (2007). "Methylation Status of the Reelin Promoter Region in the Brain of Schizophrenic Patients". Biological Psychiatry. 63: 530. doi:10.1016/j.biopsych.2007.07.003. PMID 17870056.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  92. ^ Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A (2008). "Epigenomic profiling reveals DNA-methylation changes associated with major psychosis". Am. J. Hum. Genet. 82 (3): 696–711. doi:10.1016/j.ajhg.2008.01.008. PMID 18319075.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  93. ^ Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K (1999). "Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice". Mol. Psychiatry. 4 (2): 145–54. doi:10.1038/sj.mp.4000520. PMID 10208446. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  94. ^ Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J (2007). "Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice". Brain Behav Immun. 22: 469. doi:10.1016/j.bbi.2007.09.012. PMID 18023140.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  95. ^ a b Wedenoja J, Loukola A, Tuulio-Henriksson A, Paunio T, Ekelund J, Silander K, Varilo T, Heikkilä K, Suvisaari J, Partonen T, Lönnqvist J, Peltonen L (2007). "Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families". Mol Psychiatry. 13: 673. doi:10.1038/sj.mp.4002047. PMID 17684500.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  96. ^ Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ, Kendler KS, Li T, O'Donovan M, O'Neill FA, Owen MJ, Walsh D, Weinberger DR, Sun C, Flint J, Darvasi A (2008). "Genome-Wide Association Identifies a Common Variant in the Reelin Gene That Increases the Risk of Schizophrenia Only in Women". PLoS Genet. 4 (2): e28. doi:10.1371/journal.pgen.0040028. PMID 18282107.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) free full text
  97. ^ a b Suzuki K, Nakamura K, Iwata Y, Sekine Y, Kawai M, Sugihara G, Tsuchiya KJ, Suda S, Matsuzaki H, Takei N, Hashimoto K, Mori N (2007). "Decreased expression of reelin receptor VLDLR in peripheral lymphocytes of drug-naive schizophrenic patients". Schizophrenia Research. 98: 148. doi:10.1016/j.schres.2007.09.029. PMID 17936586.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  98. ^ Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA (2008). "Reduced Dendritic Spine Density in Auditory Cortex of Subjects with Schizophrenia". Neuropsychopharmacology. doi:10.1038/npp.2008.67. PMID 18463626. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  99. ^ Glantz LA, Lewis DA (2000). "Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia". Arch. Gen. Psychiatry. 57 (1): 65–73. doi:10.1001/archpsyc.57.1.65. PMID 10632234. {{cite journal}}: Unknown parameter |month= ignored (help)
  100. ^ Rodriguez MA, Pesold C, Liu WS; et al. (2000). "Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3550–5. doi:10.1073/pnas.050589797. PMC 16277. PMID 10725376. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  101. ^ Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C (2001). "Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability". Neurobiol. Dis. 8 (5): 723–42. doi:10.1006/nbdi.2001.0436. PMID 11592844. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  102. ^ Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW. (2003) Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet. 2003 May;40(5):325-32. PMID 12746393 Free Full Text
  103. ^ Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ, Han T, Diaz-Arrastia R, Brunskill EW, Potter SS, McKnight SL. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13648-53. Epub 2004 Sep 3. PMID 15347806 Free Full Text
  104. ^ Chen Z, Schwahn BC, Wu Q, He X, Rozen R (2005). "Postnatal cerebellar defects in mice deficient in methylenetetrahydrofolate reductase". Int. J. Dev. Neurosci. 23 (5): 465–74. doi:10.1016/j.ijdevneu.2005.05.007. PMID 15979267. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  105. ^ Gene Overview of All Published Schizophrenia-Association Studies for GRIN2B - Schizophrenia Gene Database.
  106. ^ Pappas GD, Kriho V, Pesold C (2001). "Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy". J. Neurocytol. 30 (5): 413–25. doi:10.1023/A:1015017710332. PMID 11951052. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  107. ^ Podhorna J, Didriksen M (2004). "The heterozygous reeler mouse: behavioural phenotype". Behav. Brain Res. 153 (1): 43–54. doi:10.1016/j.bbr.2003.10.033. PMID 15219705. {{cite journal}}: Unknown parameter |month= ignored (help)
  108. ^ Devlin B, Bennett P, Dawson G, Figlewicz DA, Grigorenko EL, McMahon W, Minshew N, Pauls D, Smith M, Spence MA, Rodier PM, Stodgell C, Schellenberg GD; CPEA Genetics Network. (2004) Alleles of a reelin CGG repeat do not convey liability to autism in a sample from the CPEA network. Am J Med Genet B Neuropsychiatr Genet. 2004 Apr 1;126(1):46-50. PMID 15048647
  109. ^ Li J, Nguyen L, Gleason C, Lotspeich L, Spiker D, Risch N, Myers RM.(2004) Lack of evidence for an association between WNT2 and RELN polymorphisms and autism. Am J Med Genet B Neuropsychiatr Genet. 2004 Apr 1;126(1):51-7. PMID 15048648
  110. ^ Dutta S, Sinha S, Ghosh S, Chatterjee A, Ahmed S, Usha R (2008). "Genetic analysis of reelin gene (RELN) SNPs: No association with autism spectrum disorder in the Indian population". Neurosci. Lett. 441 (1): 56–60. doi:10.1016/j.neulet.2008.06.022. PMID 18597938. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  111. ^ Serajee FJ, Zhong H, Mahbubul Huq AH (2006). "Association of Reelin gene polymorphisms with autism". Genomics. 87 (1): 75–83. doi:10.1016/j.ygeno.2005.09.008. PMID 16311013. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  112. ^ Skaar DA, Shao Y, Haines JL, Stenger JE, Jaworski J, Martin ER, DeLong GR, Moore JH, McCauley JL, Sutcliffe JS, Ashley-Koch AE, Cuccaro ML, Folstein SE, Gilbert JR, Pericak-Vance MA (2005). "Analysis of the RELN gene as a genetic risk factor for autism". Mol. Psychiatry. 10 (6): 563–71. doi:10.1038/sj.mp.4001614. PMID 15558079. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  113. ^ Fatemi SH, Stary JM, Halt AR, Realmuto GR (2001). "Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum". J Autism Dev Disord. 31 (6): 529–35. doi:10.1023/A:1013234708757. PMID 11814262. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  114. ^ Fatemi SH, Stary JM, Egan EA (2002). "Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder". Cell. Mol. Neurobiol. 22 (2): 139–52. doi:10.1023/A:1019857620251. PMID 12363196. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  115. ^ Haas CA, Dudeck O, Kirsch M; et al. (2002). "Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy". J. Neurosci. 22 (14): 5797–802. doi:20026621. PMID 12122039. {{cite journal}}: Check |doi= value (help); Explicit use of et al. in: |author= (help); Unknown parameter |doi_brokendate= ignored (|doi-broken-date= suggested) (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  116. ^ Heinrich C, Nitta N, Flubacher A; et al. (2006). "Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus". J. Neurosci. 26 (17): 4701–13. doi:10.1523/JNEUROSCI.5516-05.2006. PMID 16641251. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  117. ^ Gong C, Wang TW, Huang HS, Parent JM (2007). "Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus". J. Neurosci. 27 (8): 1803–11. doi:10.1523/JNEUROSCI.3111-06.2007. PMID 17314278. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  118. ^ Botella-López A, Burgaya F, Gavín R; et al. (2006). "Reelin expression and glycosylation patterns are altered in Alzheimer's disease". Proc. Natl. Acad. Sci. U.S.A. 103 (14): 5573–8. doi:10.1073/pnas.0601279103. PMC 1414634. PMID 16567613. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  119. ^ Wirths O, Multhaup G, Czech C; et al. (2001). "Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice". Neurosci. Lett. 316 (3): 145–8. doi:10.1016/S0304-3940(01)02399-0. PMID 11744223. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  120. ^ Seripa D, Matera MG, Franceschi M; et al. (2008). "The RELN locus in Alzheimer's disease". J. Alzheimers Dis. 14 (3): 335–44. PMID 18599960. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  121. ^ Baloyannis SJ (2005). "Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer's disease: a Golgi and electron microscope study". Int. J. Neurosci. 115 (7): 965–80. doi:10.1080/00207450590901396. PMID 16051543. {{cite journal}}: Unknown parameter |month= ignored (help)
  122. ^ Baloyannis SJ, Costa V, Mauroudis I, Psaroulis D, Manolides SL, Manolides LS (2007). "Dendritic and spinal pathology in the acoustic cortex in Alzheimer's disease: morphological and morphometric estimation by Golgi technique and electron microscopy". Acta Otolaryngol. 127 (4): 351–4. doi:10.1080/00016480601126986. PMID 17453452. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  123. ^ Aoki, Takeya; Mizuki, Yasushi; Terashima, Toshio Relation between schizophrenia and Alzheimer's disease: the reelin signaling pathway Psychogeriatrics, Volume 5, Number 2, June 2005 , pp. 42-47(6)
  124. ^ Sato N, Fukushima N, Chang R, Matsubayashi H, Goggins M. (2006) Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology. 130(2):548-65. PMID 16472607
  125. ^ Perrone G, Vincenzi B, Zagami M, Santini D, Panteri R, Flammia G, Verzi A, Lepanto D, Morini S, Russo A, Bazan V, Tomasino RM, Morello V, Tonini G, Rabitti C. (2007) Reelin expression in human prostate cancer: a marker of tumor aggressiveness based on correlation with grade. Modern Pathology. doi:10.1038/modpathol.3800743. PMID 17277764
  126. ^ Seigel GM, Hackam AS, Ganguly A, Mandell LM, Gonzalez-Fernandez F (2007). "Human embryonic and neuronal stem cell markers in retinoblastoma". Mol. Vis. 13: 823–32. PMID 17615543.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Articles, publications, webpages

  • "Gabriella D'Arcangelo". Rutgers University. Retrieved 2008-08-23. the scientist who discovered the reelin gene and protein {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)

Figures and images

Template:PBB Controls