Jump to content

Cubitruncated cuboctahedron

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Cubitruncated cuboctahedron
Type Uniform star polyhedron
Elements F = 20, E = 72
V = 48 (χ = −4)
Faces by sides 8{6}+6{8}+6{8/3}
Coxeter diagram
Wythoff symbol 3 4 4/3 |
Symmetry group Oh, [4,3], *432
Index references U16, C52, W79
Dual polyhedron Tetradyakis hexahedron
Vertex figure
6.8.8/3
Bowers acronym Cotco
3D model of a cubitruncated cuboctahedron

In geometry, the cubitruncated cuboctahedron or cuboctatruncated cuboctahedron is a nonconvex uniform polyhedron, indexed as U16. It has 20 faces (8 hexagons, 6 octagons, and 6 octagrams), 72 edges, and 48 vertices,[1] and has a shäfli symbol of tr{4,3/2}

Convex hull

Its convex hull is a nonuniform truncated cuboctahedron.


Convex hull

Cubitruncated cuboctahedron

Orthogonal projection

Cartesian coordinates

Cartesian coordinates for the vertices of a cubitruncated cuboctahedron are all the permutations of

(±(2−1), ±1, ±(2+1))

Tetradyakis hexahedron

Tetradyakis hexahedron
Type Star polyhedron
Face
Elements F = 48, E = 72
V = 20 (χ = −4)
Symmetry group Oh, [4,3], *432
Index references DU16
dual polyhedron Cubitruncated cuboctahedron
3D model of a tetradyakis hexahedron

The tetradyakis hexahedron (or great disdyakis dodecahedron) is a nonconvex isohedral polyhedron. It has 48 intersecting scalene triangle faces, 72 edges, and 20 vertices.

Proportions

The triangles have one angle of , one of and one of . The dihedral angle equals . Part of each triangle lies within the solid, hence is invisible in solid models.

It is the dual of the uniform cubitruncated cuboctahedron.

See also

References

  1. ^ Maeder, Roman. "16: cubitruncated cuboctahedron". MathConsult. Archived from the original on 2015-03-29.