In linear algebra , the adjugate , classical adjoint , or adjunct of a square matrix is the transpose of its cofactor matrix .[ 1]
The adjugate[ 2] has sometimes been called the "adjoint",[ 3] but today the "adjoint" of a matrix normally refers to its corresponding adjoint operator , which is its conjugate transpose .
Definition
The adjugate of A is the transpose of the cofactor matrix C of A ,
a
d
j
(
A
)
=
C
T
.
{\displaystyle \mathrm {adj} (\mathbf {A} )=\mathbf {C} ^{\mathsf {T}}~.}
In more detail, suppose R is a commutative ring and A is an n ×n matrix with entries from R .
The (i ,j ) minor of A , denoted A ij , is the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i and column j of A .
C
i
j
=
(
−
1
)
i
+
j
A
i
j
.
{\displaystyle \mathbf {C} _{ij}=(-1)^{i+j}\mathbf {A} _{ij}~.}
The adjugate of A is the transpose of C , that is, the n ×n matrix whose (i ,j ) entry is the (j ,i ) cofactor of A ,
a
d
j
(
A
)
i
j
=
C
j
i
=
(
−
1
)
i
+
j
A
j
i
{\displaystyle \mathrm {adj} (\mathbf {A} )_{ij}=\mathbf {C} _{ji}=(-1)^{i+j}\mathbf {A} _{ji}\,}
.
The adjugate is defined as it is so that the product of A with its adjugate yields a diagonal matrix whose diagonal entries are det(A ) ,
A
a
d
j
(
A
)
=
det
(
A
)
I
.
{\displaystyle \mathbf {A} \,\mathrm {adj} (\mathbf {A} )=\det(\mathbf {A} )\,\mathbf {I} ~.}
A is invertible if and only if det(A ) is an invertible element of R , and in that case the equation above yields
a
d
j
(
A
)
=
det
(
A
)
A
−
1
,
{\displaystyle \mathrm {adj} (\mathbf {A} )=\det(\mathbf {A} )\mathbf {A} ^{-1}~,}
A
−
1
=
1
det
(
A
)
a
d
j
(
A
)
.
{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\,\mathrm {adj} (\mathbf {A} )~.}
Examples
2 × 2 generic matrix
The adjugate of the 2 × 2 matrix
A
=
(
a
b
c
d
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}{a}&{b}\\{c}&{d}\end{pmatrix}}}
is
adj
(
A
)
=
(
d
−
b
−
c
a
)
{\displaystyle \operatorname {adj} (\mathbf {A} )={\begin{pmatrix}\,\,\,{d}&\!\!{-b}\\{-c}&{a}\end{pmatrix}}}
.
It is seen that det(adj(A )) = det(A ) and hence that adj(adj(A )) = A .
3 × 3 generic matrix
Consider the 3×3 matrix
A
=
(
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
)
=
(
1
2
3
4
5
6
7
8
9
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}}={\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}}}
Its adjugate is the transpose of the cofactor matrix,
C
=
(
+
|
a
22
a
23
a
32
a
33
|
−
|
a
21
a
23
a
31
a
33
|
+
|
a
21
a
22
a
31
a
32
|
−
|
a
12
a
13
a
32
a
33
|
+
|
a
11
a
13
a
31
a
33
|
−
|
a
11
a
12
a
31
a
32
|
+
|
a
12
a
13
a
22
a
23
|
−
|
a
11
a
13
a
21
a
23
|
+
|
a
11
a
12
a
21
a
22
|
)
=
(
+
|
5
6
8
9
|
−
|
4
6
7
9
|
+
|
4
5
7
8
|
−
|
2
3
8
9
|
+
|
1
3
7
9
|
−
|
1
2
7
8
|
+
|
2
3
5
6
|
−
|
1
3
4
6
|
+
|
1
2
4
5
|
)
{\displaystyle \mathbf {C} ={\begin{pmatrix}+\left|{\begin{matrix}a_{22}&a_{23}\\a_{32}&a_{33}\end{matrix}}\right|&-\left|{\begin{matrix}a_{21}&a_{23}\\a_{31}&a_{33}\end{matrix}}\right|&+\left|{\begin{matrix}a_{21}&a_{22}\\a_{31}&a_{32}\end{matrix}}\right|\\&&\\-\left|{\begin{matrix}a_{12}&a_{13}\\a_{32}&a_{33}\end{matrix}}\right|&+\left|{\begin{matrix}a_{11}&a_{13}\\a_{31}&a_{33}\end{matrix}}\right|&-\left|{\begin{matrix}a_{11}&a_{12}\\a_{31}&a_{32}\end{matrix}}\right|\\&&\\+\left|{\begin{matrix}a_{12}&a_{13}\\a_{22}&a_{23}\end{matrix}}\right|&-\left|{\begin{matrix}a_{11}&a_{13}\\a_{21}&a_{23}\end{matrix}}\right|&+\left|{\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{matrix}}\right|\end{pmatrix}}={\begin{pmatrix}+\left|{\begin{matrix}5&6\\8&9\end{matrix}}\right|&-\left|{\begin{matrix}4&6\\7&9\end{matrix}}\right|&+\left|{\begin{matrix}4&5\\7&8\end{matrix}}\right|\\&&\\-\left|{\begin{matrix}2&3\\8&9\end{matrix}}\right|&+\left|{\begin{matrix}1&3\\7&9\end{matrix}}\right|&-\left|{\begin{matrix}1&2\\7&8\end{matrix}}\right|\\&&\\+\left|{\begin{matrix}2&3\\5&6\end{matrix}}\right|&-\left|{\begin{matrix}1&3\\4&6\end{matrix}}\right|&+\left|{\begin{matrix}1&2\\4&5\end{matrix}}\right|\end{pmatrix}}}
which is to say,
adj
(
A
)
=
(
+
|
a
22
a
23
a
32
a
33
|
−
|
a
12
a
13
a
32
a
33
|
+
|
a
12
a
13
a
22
a
23
|
−
|
a
21
a
23
a
31
a
33
|
+
|
a
11
a
13
a
31
a
33
|
−
|
a
11
a
13
a
21
a
23
|
+
|
a
21
a
22
a
31
a
32
|
−
|
a
11
a
12
a
31
a
32
|
+
|
a
11
a
12
a
21
a
22
|
)
=
(
+
|
5
6
8
9
|
−
|
2
3
8
9
|
+
|
2
3
5
6
|
−
|
4
6
7
9
|
+
|
1
3
7
9
|
−
|
1
3
4
6
|
+
|
4
5
7
8
|
−
|
1
2
7
8
|
+
|
1
2
4
5
|
)
{\displaystyle \operatorname {adj} (\mathbf {A} )={\begin{pmatrix}+\left|{\begin{matrix}a_{22}&a_{23}\\a_{32}&a_{33}\end{matrix}}\right|&-\left|{\begin{matrix}a_{12}&a_{13}\\a_{32}&a_{33}\end{matrix}}\right|&+\left|{\begin{matrix}a_{12}&a_{13}\\a_{22}&a_{23}\end{matrix}}\right|\\&&\\-\left|{\begin{matrix}a_{21}&a_{23}\\a_{31}&a_{33}\end{matrix}}\right|&+\left|{\begin{matrix}a_{11}&a_{13}\\a_{31}&a_{33}\end{matrix}}\right|&-\left|{\begin{matrix}a_{11}&a_{13}\\a_{21}&a_{23}\end{matrix}}\right|\\&&\\+\left|{\begin{matrix}a_{21}&a_{22}\\a_{31}&a_{32}\end{matrix}}\right|&-\left|{\begin{matrix}a_{11}&a_{12}\\a_{31}&a_{32}\end{matrix}}\right|&+\left|{\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{matrix}}\right|\end{pmatrix}}={\begin{pmatrix}+\left|{\begin{matrix}5&6\\8&9\end{matrix}}\right|&-\left|{\begin{matrix}2&3\\8&9\end{matrix}}\right|&+\left|{\begin{matrix}2&3\\5&6\end{matrix}}\right|\\&&\\-\left|{\begin{matrix}4&6\\7&9\end{matrix}}\right|&+\left|{\begin{matrix}1&3\\7&9\end{matrix}}\right|&-\left|{\begin{matrix}1&3\\4&6\end{matrix}}\right|\\&&\\+\left|{\begin{matrix}4&5\\7&8\end{matrix}}\right|&-\left|{\begin{matrix}1&2\\7&8\end{matrix}}\right|&+\left|{\begin{matrix}1&2\\4&5\end{matrix}}\right|\end{pmatrix}}}
where
|
a
i
m
a
i
n
a
j
m
a
j
n
|
=
det
(
a
i
m
a
i
n
a
j
m
a
j
n
)
{\displaystyle \left|{\begin{matrix}a_{im}&a_{in}\\\,\,a_{jm}&a_{jn}\end{matrix}}\right|=\det \left({\begin{matrix}a_{im}&a_{in}\\\,\,a_{jm}&a_{jn}\end{matrix}}\right)}
.
Therefore C , the matrix of cofactors for A , amounts to
C
=
(
−
3
6
−
3
6
−
12
6
−
3
6
−
3
)
{\displaystyle \mathbf {C} ={\begin{pmatrix}-3&6&-3\\6&-12&6\\-3&6&-3\end{pmatrix}}}
The adjugate is the transpose of this cofactor matrix. Thus, for instance, the (3,2) entry of the adjugate is the (2,3) cofactor of A . (In this particular, non-generic, example, however, C happens to be its own transpose, so adj(A ) = C , here.)
3 × 3 numeric matrix
As a specific example, we have
adj
(
−
3
2
−
5
−
1
0
−
2
3
−
4
1
)
=
(
−
8
18
−
4
−
5
12
−
1
4
−
6
2
)
{\displaystyle \operatorname {adj} {\begin{pmatrix}\!-3&\,2&\!-5\\\!-1&\,0&\!-2\\\,3&\!-4&\,1\end{pmatrix}}={\begin{pmatrix}\!-8&\,18&\!-4\\\!-5&\!12&\,-1\\\,4&\!-6&\,2\end{pmatrix}}}
.
The −6 in the third row, second column of the adjugate was computed as follows:
(
−
1
)
2
+
3
det
(
−
3
2
3
−
4
)
=
−
(
(
−
3
)
(
−
4
)
−
(
3
)
(
2
)
)
=
−
6.
{\displaystyle (-1)^{2+3}\;\operatorname {det} {\begin{pmatrix}\!-3&\,2\\\,3&\!-4\end{pmatrix}}=-((-3)(-4)-(3)(2))=-6.}
Again, the (3,2) entry of the adjugate is the (2,3) cofactor of A . Thus, the submatrix
(
−
3
2
3
−
4
)
{\displaystyle {\begin{pmatrix}\!-3&\,\!2\\\,\!3&\!-4\end{pmatrix}}}
was obtained by deleting the second row and third column of the original matrix A .
It is easy to check the adjugate is the inverse times the determinant, −6.
Properties
The adjugate has the properties
a
d
j
(
I
)
=
I
,
{\displaystyle \mathrm {adj} (\mathbf {I} )=\mathbf {I} ,}
a
d
j
(
A
B
)
=
a
d
j
(
B
)
a
d
j
(
A
)
,
{\displaystyle \mathrm {adj} (\mathbf {AB} )=\mathrm {adj} (\mathbf {B} )\,\mathrm {adj} (\mathbf {A} ),}
a
d
j
(
c
A
)
=
c
n
−
1
a
d
j
(
A
)
,
{\displaystyle \mathrm {adj} (c\mathbf {A} )=c^{n-1}\mathrm {adj} (\mathbf {A} )~,}
for n ×n matrices A and B . The second line follows from equations adj(B )adj(A ) =
det(B )B −1 det(A )A −1 = det(AB )(AB )−1 .
Substituting in the second line B = A m − 1 and performing the recursion, one finds, for all integer m ,
a
d
j
(
A
m
)
=
a
d
j
(
A
)
m
.
{\displaystyle \mathrm {adj} (\mathbf {A} ^{m})=\mathrm {adj} (\mathbf {A} )^{m}~.}
The adjugate preserves transposition ,
a
d
j
(
A
T
)
=
a
d
j
(
A
)
T
.
{\displaystyle \mathrm {adj} (\mathbf {A} ^{\mathsf {T}})=\mathrm {adj} (\mathbf {A} )^{\mathsf {T}}~.}
Furthermore,
If A is a n ×n matrix with n ≥ 2, then
det
(
a
d
j
(
A
)
)
=
det
(
A
)
n
−
1
,
{\displaystyle \det {\big (}\mathrm {adj} (\mathbf {A} ){\big )}=\det(\mathbf {A} )^{n-1},}
and
If A is an invertible n ×n matrix, then
a
d
j
(
a
d
j
(
A
)
)
=
det
(
A
)
n
−
2
A
,
{\displaystyle \mathrm {adj} (\mathrm {adj} (\mathbf {A} ))=\det(\mathbf {A} )^{n-2}\mathbf {A} ~,}
so that, if n = 2 and A is invertible, then det(adj(A )) = det(A ) and adj(adj(A )) = A .
Taking the adjugate of an invertible matrix A k times yields
a
d
j
k
(
A
)
=
det
(
A
)
(
n
−
1
)
k
−
(
−
1
)
k
n
A
(
−
1
)
k
,
{\displaystyle \mathrm {adj} _{k}(\mathbf {A} )=\det(\mathbf {A} )^{\frac {(n-1)^{k}-(-1)^{k}}{n}}\mathbf {A} ^{(-1)^{k}}~,}
det
(
a
d
j
k
(
A
)
)
=
det
(
A
)
(
n
−
1
)
k
.
{\displaystyle \det {\big (}\mathrm {adj} _{k}(\mathbf {A} ){\big )}=\det(\mathbf {A} )^{(n-1)^{k}}~.}
Inverses
In consequence of Laplace's formula for the determinant of an n ×n matrix A ,
A
a
d
j
(
A
)
=
a
d
j
(
A
)
A
=
det
(
A
)
I
n
(
∗
)
{\displaystyle \mathbf {A} \,\mathrm {adj} (\mathbf {A} )=\mathrm {adj} (\mathbf {A} )\,\mathbf {A} =\det(\mathbf {A} )\,\mathbf {I} _{n}\qquad (*)}
where
I
n
{\displaystyle \mathbf {I} _{n}}
is the n ×n identity matrix . Indeed, the (i ,i ) entry of the product A adj(A ) is the scalar product of row i of A with row i of the cofactor matrix C , which is simply the Laplace formula for det(A ) expanded by row i .
Moreover, for i ≠ j the (i ,j ) entry of the product is the scalar product of row i of A with row j of C , which is the Laplace formula for the determinant of a matrix whose i and j rows are equal, and therefore vanishes.
From this formula follows one of the central results in matrix algebra: A matrix A over a commutative ring R is invertible if and only if det(A ) is invertible in R .
For, if A is an invertible matrix , then
1
=
det
(
I
n
)
=
det
(
A
A
−
1
)
=
det
(
A
)
det
(
A
−
1
)
,
{\displaystyle 1=\det(\mathbf {I} _{n})=\det(\mathbf {A} \mathbf {A} ^{-1})=\det(\mathbf {A} )\det(\mathbf {A} ^{-1})~,}
and equation (*) above implies
A
−
1
=
det
(
A
)
−
1
a
d
j
(
A
)
.
{\displaystyle \mathbf {A} ^{-1}=\det(\mathbf {A} )^{-1}\,\mathrm {adj} (\mathbf {A} )~.}
Similarly, the resolvent of A is
R
(
t
;
A
)
≡
I
t
I
−
A
=
a
d
j
(
t
I
−
A
)
p
(
t
)
,
{\displaystyle R(t;\mathbf {A} )\equiv {\frac {\mathbf {I} }{t\mathbf {\mathbf {I} } -\mathbf {A} }}={\frac {\mathrm {adj} (t\mathbf {I} -\mathbf {A} )}{p(t)}}~,}
where p (t ) is the characteristic polynomial of A .
.
Characteristic polynomial
If
p
:
R
[
t
]
,
p
(
t
)
=
def
det
(
t
I
−
A
)
=
∑
i
=
0
n
p
i
t
i
,
{\displaystyle p\colon R[t],\qquad p(t){\stackrel {\text{def}}{=}}\det(t\mathbf {I} -\mathbf {A} )=\sum _{i=0}^{n}p_{i}t^{i}~,}
is the characteristic polynomial of
A
:
M
n
(
R
)
,
{\displaystyle \mathbf {A} \colon \mathrm {M} _{n}(R)~,}
then
a
d
j
(
s
I
−
A
)
=
Δ
p
(
s
,
A
)
,
{\displaystyle \mathrm {adj} \,(s\mathbf {I} -\mathbf {A} )=\mathrm {\Delta } \!p(s,\mathbf {A} )~,}
where
Δ
p
:
R
[
s
,
t
]
{\displaystyle \mathrm {\Delta } \!p\colon R[s,t]}
,
Δ
p
(
s
,
t
)
=
def
p
(
s
)
−
p
(
t
)
s
−
t
=
∑
j
=
0
n
∑
i
=
0
n
−
j
−
1
p
i
+
j
+
1
s
i
t
j
{\displaystyle \mathrm {\Delta } \!p(s,t){\stackrel {\text{def}}{=}}{\frac {p(s)-p(t)}{s-t}}=\sum _{j=0}^{n}\sum _{i=0}^{n-j-1}p_{i+j+1}s^{i}t^{j}}
is the first divided difference of p , a symmetric polynomial of degree n −1.
The adjugate also appears in Jacobi's formula for the derivative of the determinant ,
d
d
α
det
(
A
)
=
tr
(
adj
(
A
)
d
A
d
α
)
.
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \alpha }}\det(A)=\operatorname {tr} \left(\operatorname {adj} (A){\frac {\mathrm {d} A}{\mathrm {d} \alpha }}\right).}
The Cayley–Hamilton theorem allows the adjugate of A to be represented in terms of traces and powers of A :
a
d
j
(
A
)
=
∑
s
=
0
n
−
1
A
s
∑
k
1
,
k
2
,
…
,
k
n
−
1
∏
l
=
1
n
−
1
(
−
1
)
k
l
+
1
l
k
l
k
l
!
t
r
(
A
l
)
k
l
,
{\displaystyle \mathrm {adj} (\mathbf {A} )=\sum _{s=0}^{n-1}\mathbf {A} ^{s}\sum _{k_{1},k_{2},\ldots ,k_{n-1}}\prod _{l=1}^{n-1}{\frac {(-1)^{k_{l}+1}}{l^{k_{l}}k_{l}!}}\mathrm {tr} (\mathbf {A} ^{l})^{k_{l}},}
where n is the dimension of A , and the sum is taken over s and all sequences of kl ≥ 0 satisfying the linear Diophantine equation
s
+
∑
l
=
1
n
−
1
l
k
l
=
n
−
1.
{\displaystyle s+\sum _{l=1}^{n-1}lk_{l}=n-1.}
For the 2×2 case this gives
a
d
j
(
A
)
=
I
2
t
r
A
−
A
.
{\displaystyle \mathrm {adj} (\mathbf {A} )=\mathbf {I} _{2}\mathrm {tr} \mathbf {A} -\mathbf {A} .}
For the 3×3 case this gives
a
d
j
(
A
)
=
1
2
(
(
t
r
A
)
2
−
t
r
A
2
)
I
3
−
A
t
r
A
+
A
2
.
{\displaystyle \mathrm {adj} (\mathbf {A} )={\frac {1}{2}}\left((\mathrm {tr} \mathbf {A} )^{2}-\mathrm {tr} \mathbf {A} ^{2}\right)\mathbf {I} _{3}-\mathbf {A} \mathrm {tr} \mathbf {A} +\mathbf {A} ^{2}.}
For the 4×4 case this gives
a
d
j
(
A
)
=
1
6
(
(
t
r
A
)
3
−
3
t
r
A
t
r
A
2
+
2
t
r
A
3
)
I
4
−
1
2
A
(
(
t
r
A
)
2
−
t
r
A
2
)
+
A
2
t
r
A
−
A
3
.
{\displaystyle \mathrm {adj} (\mathbf {A} )={\frac {1}{6}}\left((\mathrm {tr} \mathbf {A} )^{3}-3\mathrm {tr} \mathbf {A} \mathrm {tr} \mathbf {A} ^{2}+2\mathrm {tr} \mathbf {A} ^{3}\right)\mathbf {I} _{4}-{\frac {1}{2}}\mathbf {A} \left((\mathrm {tr} \mathbf {A} )^{2}-\mathrm {tr} \mathbf {A} ^{2}\right)+\mathbf {A} ^{2}\mathrm {tr} \mathbf {A} -\mathbf {A} ^{3}.}
The same results follow directly from the terminating step of the fast Faddeev–LeVerrier algorithm .
See also
References
^ F.R. Gantmacher, The Theory of Matrices v I (Chelsea Publishing, NY, 1960) ISBN 0-8218-1376-5 , pp 76-89
^ Strang, Gilbert (1988). "Section 4.4: Applications of determinants". Linear Algebra and its Applications (3rd ed.). Harcourt Brace Jovanovich. pp. 231– 232. ISBN 0-15-551005-3 .
^ Householder, Alston S. (2006). The Theory of Matrices in Numerical Analysis . Dover Books on Mathematics. ISBN 0486449726 . pp166-168
Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis . Cambridge University Press, ISBN 978-0-521-46713-1
External links
Matrix Reference Manual
Online matrix calculator (determinant, track, inverse, adjoint, transpose) Compute Adjugate matrix up to order 8
"adjugate of { { a, b, c }, { d, e, f }, { g, h, i } }" . Wolfram Alpha .