Three-photon microscopy: Difference between revisions
MXGHarryLiu (talk | contribs) Add navbox |
m space for math |
||
Line 1: | Line 1: | ||
{{distinguish|Third harmonic generation}} |
{{distinguish|Third harmonic generation}} |
||
'''Three-photon microscopy''' (3PEF) is a high-resolution [[fluorescence]] microscopy based on nonlinear excitation effect.<ref>{{Cite journal |title=In vivo three-photon microscopy of subcortical structures within an intact mouse brain |journal = Nature Photonics|volume = 7|issue = 3|pages = 205–209|last1=Horton |first1=Nicholas G. |last2=Wang |first2=Ke |date=2013-03-01 |doi=10.1038/nphoton.2012.336 |pmc=3864872 |pmid=24353743 |last3=Kobat |first3=Demirhan |last4=Clark |first4=Catharine G. |last5=Wise |first5=Frank W. |last6=Schaffer |first6=Chris B. |last7=Xu |first7=Chris|bibcode = 2013NaPho...7..205H}}</ref><ref>{{Cite journal |title=Rapid volumetric imaging with Bessel-Beam three-photon microscopy |journal = Biomedical Optics Express|volume = 9|issue = 4|last1=Chen |first1=Bingying |last2=Huang |first2=Xiaoshuai |date=2018-03-29 |pages=1992–2000 |language=en |doi=10.1364/BOE.9.001992 |pmc=5905939 |pmid=29675334 |last3=Gou |first3=Dongzhou |last4=Zeng |first4=Jianzhi |last5=Chen |first5=Guoqing |last6=Pang |first6=Meijun |last7=Hu |first7=Yanhui |last8=Zhao |first8=Zhe |last9=Zhang |first9=Yunfeng}}</ref><ref>{{Cite journal |title=Mucosal Mast Cell Secretion Processes Imaged Using Three-Photon Microscopy of 5-Hydroxytryptamine Autofluorescence |issue=4 |date=1999-04-01 |journal=Biophysical Journal |volume=76 |pages=1835–1846 |language=en |doi=10.1016/S0006-3495(99)77343-1 |pmid=10096882 |pmc=1300160 |last1=Williams |first1=Rebecca M. |last2=Shear |first2=Jason B. |last3=Zipfel |first3=Warren R. |last4=Maiti |first4=Sudipta |last5=Webb |first5=Watt W. |bibcode=1999BpJ....76.1835W }}</ref> Different from [[Two-photon excitation microscopy|two photon excitation microscopy]], it uses three exciting photons. It typically uses 1300 nm or longer wavelength laser to excite the fluorescent dyes with three simultaneously absorbed photons, and then the fluorescent dyes emit one photon whose energy is (slightly smaller than) three times the energy of each incident photon. Comparing to two-photon microscopy, three-photon microscopy reduces the fluorescence away from the focal plan by <math>1/z^4</math>, which is much faster than that of two-photon microscopy<math>1/z^2</math>.<ref name = "Horton 2013">{{cite journal |last1=Horton |first1=Nicholas |last2=Wang |first2=Ke |last3=Kobat |first3=Demirhan |last4=Clark |first4=Catharine |last5=Wise |first5=Frank |last6=Schaffer |first6=Chris |last7=Xu |first7=Chris |title=In vivo three-photon microscopy of subcortical structures within an intact mouse brain |journal=Nature Photonics |date=20 Jan 2013 |volume=7 |issue=3 |pages=205–209 |doi=10.1038/nphoton.2012.336 |pmid=24353743 |pmc=3864872 |bibcode=2013NaPho...7..205H }}</ref> In addition, three-photon microscopy employs near-[[infrared]] light with less tissue [[scattering]] effect, which causes three photon microscopy to have higher [[Angular resolution|resolution]] than conventional [[microscopy]]. |
'''Three-photon microscopy''' (3PEF) is a high-resolution [[fluorescence]] microscopy based on nonlinear excitation effect.<ref>{{Cite journal |title=In vivo three-photon microscopy of subcortical structures within an intact mouse brain |journal = Nature Photonics|volume = 7|issue = 3|pages = 205–209|last1=Horton |first1=Nicholas G. |last2=Wang |first2=Ke |date=2013-03-01 |doi=10.1038/nphoton.2012.336 |pmc=3864872 |pmid=24353743 |last3=Kobat |first3=Demirhan |last4=Clark |first4=Catharine G. |last5=Wise |first5=Frank W. |last6=Schaffer |first6=Chris B. |last7=Xu |first7=Chris|bibcode = 2013NaPho...7..205H}}</ref><ref>{{Cite journal |title=Rapid volumetric imaging with Bessel-Beam three-photon microscopy |journal = Biomedical Optics Express|volume = 9|issue = 4|last1=Chen |first1=Bingying |last2=Huang |first2=Xiaoshuai |date=2018-03-29 |pages=1992–2000 |language=en |doi=10.1364/BOE.9.001992 |pmc=5905939 |pmid=29675334 |last3=Gou |first3=Dongzhou |last4=Zeng |first4=Jianzhi |last5=Chen |first5=Guoqing |last6=Pang |first6=Meijun |last7=Hu |first7=Yanhui |last8=Zhao |first8=Zhe |last9=Zhang |first9=Yunfeng}}</ref><ref>{{Cite journal |title=Mucosal Mast Cell Secretion Processes Imaged Using Three-Photon Microscopy of 5-Hydroxytryptamine Autofluorescence |issue=4 |date=1999-04-01 |journal=Biophysical Journal |volume=76 |pages=1835–1846 |language=en |doi=10.1016/S0006-3495(99)77343-1 |pmid=10096882 |pmc=1300160 |last1=Williams |first1=Rebecca M. |last2=Shear |first2=Jason B. |last3=Zipfel |first3=Warren R. |last4=Maiti |first4=Sudipta |last5=Webb |first5=Watt W. |bibcode=1999BpJ....76.1835W }}</ref> Different from [[Two-photon excitation microscopy|two photon excitation microscopy]], it uses three exciting photons. It typically uses 1300 nm or longer wavelength laser to excite the fluorescent dyes with three simultaneously absorbed photons, and then the fluorescent dyes emit one photon whose energy is (slightly smaller than) three times the energy of each incident photon. Comparing to two-photon microscopy, three-photon microscopy reduces the fluorescence away from the focal plan by <math>1/z^4</math>, which is much faster than that of two-photon microscopy<math>1/z^2</math>.<ref name = "Horton 2013">{{cite journal |last1=Horton |first1=Nicholas |last2=Wang |first2=Ke |last3=Kobat |first3=Demirhan |last4=Clark |first4=Catharine |last5=Wise |first5=Frank |last6=Schaffer |first6=Chris |last7=Xu |first7=Chris |title=In vivo three-photon microscopy of subcortical structures within an intact mouse brain |journal=Nature Photonics |date=20 Jan 2013 |volume=7 |issue=3 |pages=205–209 |doi=10.1038/nphoton.2012.336 |pmid=24353743 |pmc=3864872 |bibcode=2013NaPho...7..205H }}</ref> In addition, three-photon microscopy employs near-[[infrared]] light with less tissue [[scattering]] effect, which causes three photon microscopy to have higher [[Angular resolution|resolution]] than conventional [[microscopy]]. |
||
==Concept== |
==Concept== |
Revision as of 18:37, 30 June 2021
Three-photon microscopy (3PEF) is a high-resolution fluorescence microscopy based on nonlinear excitation effect.[1][2][3] Different from two photon excitation microscopy, it uses three exciting photons. It typically uses 1300 nm or longer wavelength laser to excite the fluorescent dyes with three simultaneously absorbed photons, and then the fluorescent dyes emit one photon whose energy is (slightly smaller than) three times the energy of each incident photon. Comparing to two-photon microscopy, three-photon microscopy reduces the fluorescence away from the focal plan by , which is much faster than that of two-photon microscopy by .[4] In addition, three-photon microscopy employs near-infrared light with less tissue scattering effect, which causes three photon microscopy to have higher resolution than conventional microscopy.
Concept
Three-photon excited fluorescence was first observed by Singh and Bradley in 1964 when they estimated the three-photon absorption cross section of naphthalene crystals.[5] In 1996, Stefan W. Hell designed experiments to validate the feasibility of applying three-photon excitation to scanning fluorescence microscopy, which further proved the concept of three-photon excited fluorescence.[6]
Three photon microscopy shares a few similarities with Two-photon excitation microscopy. Both of them employ point scanning method; Both are able to image 3D sample by adjusting the position of the focus lens along axial and lateral directions; The structures of both systems do not require pinhole to block out-focus light. However, three photon microscopy differs from Two-photon excitation microscopy in their Point spread function, resolution, penetration depth, resistance to out-of-focus light and strength of photobleaching.
In three-photon excitation, the fluorophore absorbs three photons almost simultaneously. The wavelength of excitation laser is about 1200 nm or more in three photon microscopy with the emission wavelength slightly longer than one-third of the excitation wavelength. Three photon microscopy has deeper tissue penetration because of the longer excitation wavelengths and the higher order nonlinear excitation. However, three-photon microscope needs the laser with higher power due to relatively smaller cross-section of the dyes for three photon excitation, which is on the order of , which is much smaller than the typical two-photon excitation cross-sections of .[7] The Ultrashort pulses are usually around 100 fs.
Resolution
For three photon fluorescence scanning microscopy, the three dimensional intensity point-spread function(IPSF) can be denoted as,
- ,[8]
where denotes the 3-D convolution operation, denotes the intensity sensitivity of an incoherent detector, and , denotes the 3-D IPSF for the objective lens and collector lens in single-photon fluorescence, respectively. The 3-D IPSF can be expressed in
- ,[8]
where is a Bessel function of the first kind of order zero. The axial and radial coordinates and are defined by
- and
- ,[8]
where is the numerical aperture of the objective lens, is the real defocus, and is the radial coordinates.
Coupling with other multiphoton techniques
Correlative images can be obtained using different multiphoton schemes such as 2PEF, 3PEF, and Third harmonic generation (THG), in parallel (since the corresponding wavelengths are different, they can be easily separated onto different detectors). A multichannel image is then constructed.[9]
3PEF is also compared to 2PEF : it generally give a smaller degradation of the signal-to-background ratio (SBR) with depth, even if the emitted signal is smaller than with 2PEF.[9]
Development
After three-photon excited fluorescence was observed by Singh and Bradley and further validated by Hell, Chris Xu reported measurement of excitation cross sections of several native chromophores and biological indicators, and implemented three-photon excited fluorescence in Laser Scanning Microscopy of living cells.[10] In November 1996, David Wokosin applied three photon excitation fluorescence for fixed in vivo biological specimen imaging.
In 2010s, three photon microscopy was applied for deep tissue imaging using excitation wavelengths beyond 1060 nm. In January 2013, Horton, Wang and Kobat invented in vivo deep imaging of an intact mouse brain by employing point scanning method to three photon microscope at the long wavelength window of 1700 nm.[4] In February 2017, Dimitre Ouzounov and Tainyu Wang demonstrated deep activity imaging of GCaMP6-labeled neurons in the hippocampus of an intact, adult mouse brain using three-photon microscopy at the 1300 nm wavelength window.[11] In May 2017, Rowlands applied wide-field three-photon excitation to three photon microscope for larger penetration depth.[12] In Oct 2018, T Wang, D Ouzounov, and C Xu were able to image vasculature and GCaMP6 calcium activity using three photon microscope through the intact mouse skull.[13]
Applications
Three-photon microscopy has similar application fields with two-photon excitation microscopy including neuroscience,[14] and oncology.[15] However, comparing to standard single-photon or two-photon excitation, three-photon excitation has several benefits such as the use of longer wavelengths reduces the effects of light scattering and increasing the penetration depth of the illumination beam into the sample.[16] The nonlinear nature of three photon microscopy confines the excitation target to a smaller volume, reducing out-of-focus light as well as minimizing photobleaching on the biological sample.[16] These advantages of three-photon microscopy gives it an edge in visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue [4] and Rapid volumetric imaging.[17] In the recent study, Xu has demonstrated the potential of three-photon imaging for noninvasive studies of live biological systems.[13] The paper used three-photon fluorescence microscopy at a spectral excitation window of 1,320 nm to imaging the mouse brain structure and function through the intact skull with high spatial and temporal resolution(The lateral and axial FWHM was 0.96μm and 4.6μm) and large FOVs(hundreds of micrometers), and at substantial depth(>500 μm). This work demonstrates the advantage of higher-order nonlinear excitation for imaging through a highly scattering layer, which is in addition to the previously reported advantage of 3PM for deep imaging of densely labeled samples.
See also
References
- ^ Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris (2013-03-01). "In vivo three-photon microscopy of subcortical structures within an intact mouse brain". Nature Photonics. 7 (3): 205–209. Bibcode:2013NaPho...7..205H. doi:10.1038/nphoton.2012.336. PMC 3864872. PMID 24353743.
- ^ Chen, Bingying; Huang, Xiaoshuai; Gou, Dongzhou; Zeng, Jianzhi; Chen, Guoqing; Pang, Meijun; Hu, Yanhui; Zhao, Zhe; Zhang, Yunfeng (2018-03-29). "Rapid volumetric imaging with Bessel-Beam three-photon microscopy". Biomedical Optics Express. 9 (4): 1992–2000. doi:10.1364/BOE.9.001992. PMC 5905939. PMID 29675334.
- ^ Williams, Rebecca M.; Shear, Jason B.; Zipfel, Warren R.; Maiti, Sudipta; Webb, Watt W. (1999-04-01). "Mucosal Mast Cell Secretion Processes Imaged Using Three-Photon Microscopy of 5-Hydroxytryptamine Autofluorescence". Biophysical Journal. 76 (4): 1835–1846. Bibcode:1999BpJ....76.1835W. doi:10.1016/S0006-3495(99)77343-1. PMC 1300160. PMID 10096882.
- ^ a b c Horton, Nicholas; Wang, Ke; Kobat, Demirhan; Clark, Catharine; Wise, Frank; Schaffer, Chris; Xu, Chris (20 Jan 2013). "In vivo three-photon microscopy of subcortical structures within an intact mouse brain". Nature Photonics. 7 (3): 205–209. Bibcode:2013NaPho...7..205H. doi:10.1038/nphoton.2012.336. PMC 3864872. PMID 24353743.
- ^ Singh, S.; Bradley, L. T. (1 Jun 1964). "Three-Photon Absorption in Napthalene Crystals by Laser Excitation". Physical Review Letters. 12 (22): 612–614. Bibcode:1964PhRvL..12..612S. doi:10.1103/PhysRevLett.12.612.
- ^ Hell, S W; Bahlmann, K; Schrader, M; Soini, A; Malak, H M; Gryczynski, I; Lakowicz, J R (1 Jan 1996). "Three-photon excitation in fluorescence microscopy". Journal of Biomedical Optics. 1 (1): 71–74. Bibcode:1996JBO.....1...71H. doi:10.1117/12.229062. PMID 23014645.
- ^ Toda, Keisuke; Isobe, Keisuke; Namiki, Kana; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi (June 2017). "Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier". Biomedical Optics Express. 8 (6): 2796–2806. doi:10.1364/BOE.8.002796. PMC 5480430. PMID 28663907.
- ^ a b c Gu, Min (1 Jul 1996). "Resolution in three-photon fluorescence scanning microscopy". Optics Letters. 21 (13): 988–990. Bibcode:1996OptL...21..988G. doi:10.1364/OL.21.000988. PMID 19876227.
- ^ a b Guesmi, Khmaies; Abdeladim, Lamiae; Tozer, Samuel; Mahou, Pierre; Kumamoto, Takuma; Jurkus, Karolis; Rigaud, Philippe; Loulier, Karine; Dray, Nicolas; Georges, Patrick; Hanna, Marc; Livet, Jean; Supatto, Willy; Beaurepaire, Emmanuel; Druon, Frédéric (2018). "Dual-color deep-tissue three-photon microscopy with a multiband infrared laser". Light: Science & Applications. 7 (1): 12. Bibcode:2018LSA.....7...12G. doi:10.1038/s41377-018-0012-2. ISSN 2047-7538. PMC 6107000. PMID 30839589.
- ^ Xu, C; Zipfel, W; Shear, J B; Williams, R M; Webb, W W (1 Oct 1996). "Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy". Proc Natl Acad Sci U S A. 93 (20): 10763–10768. Bibcode:1996PNAS...9310763X. doi:10.1073/pnas.93.20.10763. PMC 38229. PMID 8855254.
- ^ Ouzounov, Dimitre; Wang, Tianyu; Wang, Mengran; Feng, Danielle; Horton, Nicholas; Cruz-Hernández, Jean; Cheng, Yuting; Reimer, Jacob; Tolias, Andreas; Nishimura, Nozomi; Xu, Chris (20 February 2017). "In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain". Nature Methods. 14 (4): 388–390. doi:10.1038/nmeth.4183. PMC 6441362. PMID 28218900.
- ^ Rowlands, Christopher; Park, Demian; Bruns, Oliver; Piatkevich, Kiryl; Fukumura, Dai; Jain, Rakesh; Bawendi, Moungi; Boyden, Edward; So, Peter (5 May 2017). "Wide-field three-photon excitation in biological samples". Light: Science and Applications. 6 (5): e16255. Bibcode:2017LSA.....6E6255R. doi:10.1038/lsa.2016.255. PMC 5687557. PMID 29152380. ProQuest 1917694404.
- ^ a b Wang, Tianyu; Ouzounov, Dimitre; Wu, Chunyan; Horton, Nicholas; Zhang, Bin; Wu, Cheng-Hsun; Zhang, Yanping; Schnitzer, Mark; Xu, Chris (10 Sep 2018). "Three-photon imaging of mouse brain structure and function through the intact skull". Nature Methods. 15 (10): 789–792. doi:10.1038/s41592-018-0115-y. PMC 6188644. PMID 30202059.
- ^ Kerr, Jason; Denk, Winfried (Mar 2008). "Imaging in vivo: watching the brain in action". Nature Reviews Neuroscience. 9 (3): 195–205. doi:10.1038/nrn2338. PMID 18270513. S2CID 6301173.
- ^ Williams, Rebecca M.; Flesken-Nikitin, Andrea; Ellenson, Lora Hedrick; Connolly, Denise C.; Hamilton, Thomas C.; Nikitin, Alexander Yu.; Zipfel, Warren R. (Jun 2010). "Strategies for High Resolution Imaging of Epithelial Ovarian Cancer by Laparoscopic Nonlinear Microscopy". Translational Oncology. 3 (3): 181–194. doi:10.1593/tlo.09310. PMC 2887648. PMID 20563260.
- ^ a b Escobet-Montalbán, Adrià; Gasparoli, Federico M.; Nylk, Jonathan; Liu, Pengfei; Yang, Zhengyi; Dholakia, Kishan (Oct 2018). "Three-photon light-sheet fluorescence microscopy". Optics Letters. 43 (21): 5484–5487. Bibcode:2018OptL...43.5484E. doi:10.1364/ol.43.005484. hdl:10023/18816. PMID 30383037.
- ^ Chen, Bingying; Huang, Xiaoshuai; Gou, Dongzhou; Zeng, Jianzhi; Chen, Guoqing; Pang, Meijun; Hu, Yanhui; Zhao, Zhe; Zhang, Yunfeng; Zhou, Zhuan; Wu, Haitao; Cheng, Heping; Zhang, Zhigang; Xu, Chris; Li, Yulong; Chen, Liangyi; Wang, Aimin (Apr 2018). "Rapid volumetric imaging with Bessel-Beam three-photon microscopy". Biomedical Optics Express. 9 (4): 1992–2000. doi:10.1364/boe.9.001992. PMC 5905939. PMID 29675334.