Jump to content

Probability: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Applications to everyday life: most of these applications are not "everyday"
belong in theory
Line 3: Line 3:


'''Probability''' is the chance that something is likely to happen or be the case<ref>Oxford Dictionary of English, Second Edition</ref>. [[Probability theory]] is used extensively in areas such as [[statistics]], [[mathematics]], [[science]] and [[philosophy]] to draw conclusions about the likelihood of potential events and the underlying mechanics of complex systems.
'''Probability''' is the chance that something is likely to happen or be the case<ref>Oxford Dictionary of English, Second Edition</ref>. [[Probability theory]] is used extensively in areas such as [[statistics]], [[mathematics]], [[science]] and [[philosophy]] to draw conclusions about the likelihood of potential events and the underlying mechanics of complex systems.

In mathematics, probabilities always lie between [[0 (number)|zero]] and [[1 (number)|one]]. An impossible event has a probability of 0, and a certain event has a probability of 1. (However, events of probability zero are not necessarily impossible, and those of probability one are not always certain.)

There are other rules for quantifying uncertainty,
such as the [[Dempster-Shafer theory]] and [[possibility theory]],
but those are essentially different and not compatible with the laws of probability as they are usually understood.


==Interpretations==
==Interpretations==
Line 44: Line 38:
{{main|probability theory}}
{{main|probability theory}}
Like other [[theory|theories]], the [[probability theory|theory of probability]] is a representation of probabilistic concepts in formal terms—that is, in terms that can be considered separately from their meaning. These formal terms are manipulated by the rules of mathematics and logic, and any results are then interpreted or translated back into the problem domain.
Like other [[theory|theories]], the [[probability theory|theory of probability]] is a representation of probabilistic concepts in formal terms—that is, in terms that can be considered separately from their meaning. These formal terms are manipulated by the rules of mathematics and logic, and any results are then interpreted or translated back into the problem domain.

There are other rules for quantifying uncertainty,
such as the [[Dempster-Shafer theory]] and [[possibility theory]],
but those are essentially different and not compatible with the laws of probability as they are usually understood.


== Applications ==
== Applications ==

Revision as of 01:37, 22 March 2007

"Probably" redirects here. For the South Park episode, see Probably (South Park).

Probability is the chance that something is likely to happen or be the case[1]. Probability theory is used extensively in areas such as statistics, mathematics, science and philosophy to draw conclusions about the likelihood of potential events and the underlying mechanics of complex systems.

Interpretations

The word probability does not have a consistent definition. Actually, there are two broad categories of probability interpretations: Frequentists talk about probabilities only when dealing with well defined random experiments. The relative frequency of occurrence of an experiment's outcome, when repeating the experiment, is a measure of the probability of that random event. Bayesians, on the other hand, assign probabilities to any statement whatsoever, even when no random process is involved, as a way to represent its subjective plausibility.

History

The scientific study of probability is a modern development. Gambling shows that there has been an interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions of use in those problems only arose much later.

According to Richard Jeffrey, "Before the middle of the seventeenth century, the term 'probable' (Latin probable) meant approvable, and was applied in that sense, univocally, to opinion and to action. A probable action or opinion was one such as sensible people would undertake or hold, in the circumstances."[2]

The doctrine of probabilities dates to the correspondence of Pierre de Fermat and Blaise Pascal (1654). Christiaan Huygens (1657) gave the earliest known scientific treatment of the subject. Jakob Bernoulli's Ars Conjectandi (posthumous, 1713) and Abraham de Moivre's Doctrine of Chances (1718) treated the subject as a branch of mathematics. See Ian Hacking's The Emergence of Probability for a history of the early development of the very concept of mathematical probability.

The theory of errors may be traced back to Roger Cotes's Opera Miscellanea (posthumous, 1722), but a memoir prepared by Thomas Simpson in 1755 (printed 1756) first applied the theory to the discussion of errors of observation. The reprint (1757) of this memoir lays down the axioms that positive and negative errors are equally probable, and that there are certain assignable limits within which all errors may be supposed to fall; continuous errors are discussed and a probability curve is given.

Pierre-Simon Laplace (1774) made the first attempt to deduce a rule for the combination of observations from the principles of the theory of probabilities. He represented the law of probability of errors by a curve , being any error and its probability, and laid down three properties of this curve:

  1. it is symmetric as to the -axis;
  2. the -axis is an asymptote, the probability of the error being 0;
  3. the area enclosed is 1, it being certain that an error exists.

He deduced a formula for the mean of three observations. He also gave (1781) a formula for the law of facility of error (a term due to Lagrange, 1774), but one which led to unmanageable equations. Daniel Bernoulli (1778) introduced the principle of the maximum product of the probabilities of a system of concurrent errors.

The method of least squares is due to Adrien-Marie Legendre (1805), who introduced it in his Nouvelles méthodes pour la détermination des orbites des comètes (New Methods for Determining the Orbits of Comets). In ignorance of Legendre's contribution, an Irish-American writer, Robert Adrain, editor of "The Analyst" (1808), first deduced the law of facility of error,

and being constants depending on precision of observation. He gave two proofs, the second being essentially the same as John Herschel's (1850). Gauss gave the first proof which seems to have been known in Europe (the third after Adrain's) in 1809. Further proofs were given by Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W. F. Donkin (1844, 1856), and Morgan Crofton (1870). Other contributors were Ellis (1844), De Morgan (1864), Glaisher (1872), and Giovanni Schiaparelli (1875). Peters's (1856) formula for , the probable error of a single observation, is well known.

In the nineteenth century authors on the general theory included Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion, and Karl Pearson. Augustus De Morgan and George Boole improved the exposition of the theory.

On the geometric side (see integral geometry) contributors to The Educational Times were influential (Miller, Crofton, McColl, Wolstenholme, Watson, and Artemas Martin).

Theory

Like other theories, the theory of probability is a representation of probabilistic concepts in formal terms—that is, in terms that can be considered separately from their meaning. These formal terms are manipulated by the rules of mathematics and logic, and any results are then interpreted or translated back into the problem domain.

There are other rules for quantifying uncertainty, such as the Dempster-Shafer theory and possibility theory, but those are essentially different and not compatible with the laws of probability as they are usually understood.

Applications

Two major applications of probability theory in everyday life are in risk assessment and in trade on commodity markets. Governments typically apply probability methods in environmental regulation where it is called "pathway analysis", and are often measuring well-being using methods that are stochastic in nature, and choosing projects to undertake based on statistical analyses of their probable effect on the population as a whole. It is not correct to say that statistics are involved in the modelling itself, as typically the assessments of risk are one-time and thus require more fundamental probability models, e.g. "the probability of another 9/11". A law of small numbers tends to apply to all such choices and perception of the effect of such choices, which makes probability measures a political matter.

A good example is the effect of the perceived probability of any widespread Middle East conflict on oil prices - which have ripple effects in the economy as a whole. An assessment by a commodity trade that a war is more likely vs. less likely sends prices up or down, and signals other traders of that opinion. Accordingly, the probabilities are not assessed independently nor necessarily very rationally. The theory of behavioral finance emerged to describe the effect of such groupthink on pricing, on policy, and on peace and conflict.

It can reasonably be said that the discovery of rigorous methods to assess and combine probability assessments has had a profound effect on modern society. Accordingly, it may be of some importance to most citizens to understand how odds and probability assessments are made, and how they contribute to reputations and to decisions, especially in a democracy.

Another significant application of probability theory in everyday life is reliability. Many consumer products, such as automobiles and consumer electronics, utilize reliability theory in the design of the product in order to reduce the probability of failure. The probability of failure is also closely associated with the product's warranty.

It could be said that there is no such thing as probability. It could also be said that probability is a measure of our degree of uncertainty, or that is, the extent of our ignorance in a given situation. Consequently, there might be a probability of 1 in 52 that the top card in a deck of cards is the Jack of diamonds. However, if one looks at the top card and replaces it, then the probability is either 100% or zero percent, and the correct choice can be accurately made by the viewer.

In a deterministic universe, based on Newtonian concepts, there is no probability if all conditions are known. In the case of a roulette wheel, if the force of the hand and the period of that force are known, then the number on which the ball will stop would be a certainty. Of course, this also assumes knowledge of inertia and friction of the wheel, weight, smoothness and roundness of the ball, and so forth.

See also

References

  1. ^ Oxford Dictionary of English, Second Edition
  2. ^ Jeffrey, R.C., Probability and the Art of Judgment, Cambridge University Press. (1992). pp. 54-55 . ISBN 0-521-39459-7
  • Olav Kallenberg, Probabilistic Symmetries and Invariance Principles. Springer -Verlag, New York (2005). 510 pp. ISBN 0-387-25115-4
  • Kallenberg, O., Foundations of Modern Probability, 2nd ed. Springer Series in Statistics. (2002). 650 pp. ISBN 0-387-95313-2

Quotations

  • Damon Runyon, "It may be that the race is not always to the swift, nor the battle to the strong - but that is the way to bet."
  • Pierre-Simon Laplace "It is remarkable that a science which began with the consideration of games of chance should have become the most important object of human knowledge." Théorie Analytique des Probabilités, 1812.
  • Richard von Mises "The unlimited extension of the validity of the exact sciences was a characteristic feature of the exaggerated rationalism of the eighteenth century" (in reference to Laplace). Probability, Statistics, and Truth, p 9. Dover edition, 1981 (republication of second English edition, 1957).