Skip to main content
Log in

Une methode locale pour l’existence de solutions positives de problemes semi-lineaires elliptiques dans RN

  • Published:
Journal d’Analyse Mathématique Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Singapore)

Instant access to the full article PDF.

Références

  1. S. Agmon, A. Douglis and L. Nirenberg,Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math.12 (1959), 623–727.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Amann,Existence of multiple solutions for nonlinear elliptic boundary value problems, Indiana Univ. Math J.21 (1975), 925–935.

    Article  MathSciNet  Google Scholar 

  3. H. Amann,Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems, inNonlinear Operators and the Calculus of Variations, Lecture Notes in Math. No. 543, Springer Verlag, New York, 1975.

    Google Scholar 

  4. H. Amann,Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z.150 (1976), 281–295.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Ambrosetti et P. H. Rabinowitz,Dual variational methods in critical point theory and applications, J. Functional Analysis,14 (1973), 349–381.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Anderson et G. Derrick,Stability of time dependent particle-like solutions in nonlinear field theories, J. Math. Phys.11 (1970), 1336–1346 and12 (1971), 945–952.

    Article  Google Scholar 

  7. M. S. Berger,On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Functional Analysis9 (1972), 249–261.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Berestycki et P. L. Lions,Existence d’ondes solitaires dans des problèmes non-linéaires du type Klein-Gordon, C. R. Acad. Sci. Paris Sér. A287 (1978), 503–506. Article détaillé à paraître.

    MATH  MathSciNet  Google Scholar 

  9. H. Berestycki et P. L. Lions,Existence of a ground state in nonlinear equations of the type Klein-Gordon, inVariational Inequalities (Cottle, Gianessi, and Lions, eds.), Wiley, New York, 1980.

    Google Scholar 

  10. H. Berestycki et P. L. Lions,Existence d’ondes solitaires dans des problèmes non-linéaires du type-Gordon (2ème partie). C. R. Acad. Sci. Paris Sér. A288 (1979), Article détaillé à paraître.

  11. H. Berestycki et P. L. Lions,Some applications of the method of sub- and supersolutions, inBifurcation and Nonlinear Eigenvalue Problems (Bardos, Lasry and Schatzman, eds.), Lecture Notes in Math. No. 782, Springer Verlag, New York, 1979.

    Google Scholar 

  12. H. Berestycki, P. L. Lions et L. A. Peletier,An O.D.E. approach to the existence of positive solutions for semi-linear problems, inR N, à paraître. Indiana Univ. Math. J. (1981).

  13. H. Brezis et R. E. L. Turner,On a class of superlinear elliptic problems, Commun. Partial. Differ. Equ.2 (1977), 601–614.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Bristeau et R. Glowinski,Rapport I.N.R.I.A. (Rocquencourt, France), à paraître; voir également livre de R. Glowinski, à paraître.

  15. C. V. Coffman,Uniqueness of the ground state solution for δu−u+u 3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal.46 (1972), 81–95.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Gidas, Wei-Ming Ni et L. Nirenberg,Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979), 209–243.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Kato,Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math.19 (1959), 403–425.

    Article  Google Scholar 

  18. J. Leray et J. Schauder,Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup.51 (1934), 45–78.

    MATH  MathSciNet  Google Scholar 

  19. L. Nirenberg,Topics in Nonlinear Functional Analysis, Lecture Notes, Courant Institute, New York University, New York, 1974.

    MATH  Google Scholar 

  20. R. Nussbaum,Positive solutions of nonlinear elliptic boundary value problems, J. Math. Anal. Appl.51 (1975), 461–482.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. I. Pohozaev,Eigenfunctions of the equation Δu+λf(u)=0, Sov. Math. Dokl.5 (1965), 1408–1411.

    Google Scholar 

  22. P. H. Rabinowitz,Variational methods for nonlinear elliptic eigenvalue problems Indiana Univ. Math. J.23 (1974), 729–754.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. H. Rabinowitz,Paris of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J.23 (1974), 173–186.

    Article  MathSciNet  Google Scholar 

  24. A. F. Rañada et L. Vásquez,Kinks and the Heisenberg uncertainty principle, to appear in Phys. Rev.

  25. G. Stampacchia,Le problème de Dirichlet pour les équations du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble)15 (1965), 189–257.

    MATH  MathSciNet  Google Scholar 

  26. W. Strauss,Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977), 149–162.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Vásquez,Elementary length in nonlinear classical fields, Lett. Nuovo Cimento19 (1977), 37–40.

    Article  Google Scholar 

  28. L. Vásquez,Interaction and stability of localized solutions in a classical nonlinear scalar field theory, J. Math. Phys.19 (1978), 387–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berestycki, H., Lions, P.L. Une methode locale pour l’existence de solutions positives de problemes semi-lineaires elliptiques dans RN . J. Anal. Math. 38, 144–187 (1980). https://doi.org/10.1007/BF03033880

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033880

Navigation