Références
S. Agmon, A. Douglis and L. Nirenberg,Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math.12 (1959), 623–727.
H. Amann,Existence of multiple solutions for nonlinear elliptic boundary value problems, Indiana Univ. Math J.21 (1975), 925–935.
H. Amann,Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems, inNonlinear Operators and the Calculus of Variations, Lecture Notes in Math. No. 543, Springer Verlag, New York, 1975.
H. Amann,Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z.150 (1976), 281–295.
A. Ambrosetti et P. H. Rabinowitz,Dual variational methods in critical point theory and applications, J. Functional Analysis,14 (1973), 349–381.
D. Anderson et G. Derrick,Stability of time dependent particle-like solutions in nonlinear field theories, J. Math. Phys.11 (1970), 1336–1346 and12 (1971), 945–952.
M. S. Berger,On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Functional Analysis9 (1972), 249–261.
H. Berestycki et P. L. Lions,Existence d’ondes solitaires dans des problèmes non-linéaires du type Klein-Gordon, C. R. Acad. Sci. Paris Sér. A287 (1978), 503–506. Article détaillé à paraître.
H. Berestycki et P. L. Lions,Existence of a ground state in nonlinear equations of the type Klein-Gordon, inVariational Inequalities (Cottle, Gianessi, and Lions, eds.), Wiley, New York, 1980.
H. Berestycki et P. L. Lions,Existence d’ondes solitaires dans des problèmes non-linéaires du type-Gordon (2ème partie). C. R. Acad. Sci. Paris Sér. A288 (1979), Article détaillé à paraître.
H. Berestycki et P. L. Lions,Some applications of the method of sub- and supersolutions, inBifurcation and Nonlinear Eigenvalue Problems (Bardos, Lasry and Schatzman, eds.), Lecture Notes in Math. No. 782, Springer Verlag, New York, 1979.
H. Berestycki, P. L. Lions et L. A. Peletier,An O.D.E. approach to the existence of positive solutions for semi-linear problems, inR N, à paraître. Indiana Univ. Math. J. (1981).
H. Brezis et R. E. L. Turner,On a class of superlinear elliptic problems, Commun. Partial. Differ. Equ.2 (1977), 601–614.
M. Bristeau et R. Glowinski,Rapport I.N.R.I.A. (Rocquencourt, France), à paraître; voir également livre de R. Glowinski, à paraître.
C. V. Coffman,Uniqueness of the ground state solution for δu−u+u 3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal.46 (1972), 81–95.
B. Gidas, Wei-Ming Ni et L. Nirenberg,Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979), 209–243.
T. Kato,Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math.19 (1959), 403–425.
J. Leray et J. Schauder,Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup.51 (1934), 45–78.
L. Nirenberg,Topics in Nonlinear Functional Analysis, Lecture Notes, Courant Institute, New York University, New York, 1974.
R. Nussbaum,Positive solutions of nonlinear elliptic boundary value problems, J. Math. Anal. Appl.51 (1975), 461–482.
S. I. Pohozaev,Eigenfunctions of the equation Δu+λf(u)=0, Sov. Math. Dokl.5 (1965), 1408–1411.
P. H. Rabinowitz,Variational methods for nonlinear elliptic eigenvalue problems Indiana Univ. Math. J.23 (1974), 729–754.
P. H. Rabinowitz,Paris of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J.23 (1974), 173–186.
A. F. Rañada et L. Vásquez,Kinks and the Heisenberg uncertainty principle, to appear in Phys. Rev.
G. Stampacchia,Le problème de Dirichlet pour les équations du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble)15 (1965), 189–257.
W. Strauss,Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977), 149–162.
L. Vásquez,Elementary length in nonlinear classical fields, Lett. Nuovo Cimento19 (1977), 37–40.
L. Vásquez,Interaction and stability of localized solutions in a classical nonlinear scalar field theory, J. Math. Phys.19 (1978), 387–389.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Berestycki, H., Lions, P.L. Une methode locale pour l’existence de solutions positives de problemes semi-lineaires elliptiques dans RN . J. Anal. Math. 38, 144–187 (1980). https://doi.org/10.1007/BF03033880
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF03033880