Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches
Abstract
:1. Introduction
2. The ETS Family
2.1. SPDEF in PCa, the Double Agent
Applications of SPDEF in Prostate Cancer Detection
2.2. ERG and ERG Translocations
Targeting ERG and ERG Translocations for Diagnostic and Therapeutic Purposes
3. Androgen Receptor, the Great Player
3.1. AR’s Diagnostic and Therapeutic Applications
3.2. Mechanism of Resistance Mediated by AR
3.3. Neuroendocrine Prostate Cancer (NEPC) Transcription Factors
4. Activating Protein-1
AP-1 Roles in Prostate Cancer
5. NF-κB, beyond the Inflammation Response
NF-κB in Prostate Cancer
6. MYC, a Master Regulator of Transcription
6.1. Diagnostic Potential of MYC
6.2. MYC as a Therapeutic Target
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide Fir 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.L.; Taatjes, D.J. The Mediator Complex: A Central Integrator of Transcription. Nat. Rev. Mol. Cell Biol. 2015, 16, 155–166. [Google Scholar] [CrossRef]
- Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The Human Transcription Factors. Cell 2018, 172, 650–665. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Zhou, S.; Cai, C.; Lupien, M.; He, H.H. Pioneer of Prostate Cancer: Past, Present and the Future of FOXA1. Protein Cell 2021, 12, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Irvine, R.A.; Buchanan, G.; Koh, S.S.; Park, J.M.; Tilley, W.D.; Stallcup, M.R.; Press, M.F.; Coetzee, G.A. Breast Cancer Susceptibility Gene 1 (BRCAI) Is a Coactivator of the Androgen Receptor. Cancer Res. 2000, 60, 5946–5949. [Google Scholar] [PubMed]
- Chen, Y.; Xu, J.; Borowicz, S.; Collins, C.; Huo, D.; Olopade, O.I. C-Myc Activates BRCA1 Gene Expression through Distal Promoter Elements in Breast Cancer Cells. BMC Cancer 2011, 11, 246. [Google Scholar] [CrossRef] [PubMed]
- Hassin, O.; Oren, M. Drugging P53 in Cancer: One Protein, Many Targets. Nat. Rev. Drug Discov. 2023, 22, 127–144. [Google Scholar] [CrossRef]
- Knudsen, E.S.; Pruitt, S.C.; Hershberger, P.A.; Witkiewicz, A.K.; Goodrich, D.W. Cell Cycle and Beyond: Exploiting New RB1 Controlled Mechanisms for Cancer Therapy. Trends Cancer 2019, 5, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, N.; Garcia De Herreros, M.; Reig, Ò.; Marín-Aguilera, M.; Aversa, C.; Ferrer-Mileo, L.; García-Esteve, S.; Rodríguez-Carunchio, L.; Trias, I.; Font, A.; et al. Development and Independent Validation of a Prognostic Gene Expression Signature Based on RB1, PTEN, and TP53 in Metastatic Hormone-Sensitive Prostate Cancer Patients. Eur. Urol. Oncol. 2024, S2588931124000257. [Google Scholar] [CrossRef]
- Nyquist, M.D.; Corella, A.; Coleman, I.; De Sarkar, N.; Kaipainen, A.; Ha, G.; Gulati, R.; Ang, L.; Chatterjee, P.; Lucas, J.; et al. Combined TP53 and RB1 Loss Promotes Prostate Cancer Resistance to a Spectrum of Therapeutics and Confers Vulnerability to Replication Stress. Cell Rep. 2020, 31, 107669. [Google Scholar] [CrossRef]
- Bykov, V.J.N.; Eriksson, S.E.; Bianchi, J.; Wiman, K.G. Targeting Mutant P53 for Efficient Cancer Therapy. Nat. Rev. Cancer 2018, 18, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting P53 Pathways: Mechanisms, Structures, and Advances in Therapy. Signal Transduct. Target. Ther. 2023, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, M.; Ryan, C.J. BRCAness and Prostate Cancer: Diagnostic and Therapeutic Considerations. Prostate Cancer Prostatic Dis. 2018, 21, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Findlay, V.J.; LaRue, A.C.; Turner, D.P.; Watson, P.M.; Watson, D.K. Understanding the Role of ETS-Mediated Gene Regulation in Complex Biological Processes. Adv. Cancer Res. 2013, 119, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Sharrocks, A.D. The ETS-Domain Transcription Factor Family. Nat. Rev. Mol. Cell Biol. 2001, 2, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.-C.; Wang, F.-F. The Role of SPDEF in Cancer: Promoter or Suppressor. Neoplasma 2022, 69, 1270–1276. [Google Scholar] [CrossRef]
- Ye, T.; Feng, J.; Wan, X.; Xie, D.; Liu, J. Double Agent: SPDEF Gene with Both Oncogenic and Tumor-Suppressor Functions in Breast Cancer. Cancer Manag. Res. 2020, 12, 3891–3902. [Google Scholar] [CrossRef] [PubMed]
- Oettgen, P.; Finger, E.; Sun, Z.; Akbarali, Y.; Thamrongsak, U.; Boltax, J.; Grall, F.; Dube, A.; Weiss, A.; Brown, L.; et al. PDEF, a Novel Prostate Epithelium-Specific Ets Transcription Factor, Interacts with the Androgen Receptor and Activates Prostate-Specific Antigen Gene Expression. J. Biol. Chem. 2000, 275, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Q.; Pei, J.-H.; Shi, S.-S.; Guo, X.; Cui, G.; Li, Y.-F.; Zhang, H.-P.; Hu, W.-Q. CRISPR/Cas9-Mediated Knockout of the PDEF Gene Inhibits Migration and Invasion of Human Gastric Cancer AGS Cells. Biomed. Pharmacother. 2019, 111, 76–85. [Google Scholar] [CrossRef]
- Guo, M.; Tomoshige, K.; Meister, M.; Muley, T.; Fukazawa, T.; Tsuchiya, T.; Karns, R.; Warth, A.; Fink-Baldauf, I.M.; Nagayasu, T.; et al. Gene Signature Driving Invasive Mucinous Adenocarcinoma of the Lung. EMBO Mol. Med. 2017, 9, 462–481. [Google Scholar] [CrossRef]
- Rodabaugh, K.J.; Mhawech-Fauceglia, P.; Groth, J.; Lele, S.; Sood, A.K. Prostate-Derived Ets Factor Is Overexpressed in Serous Epithelial Ovarian Tumors. Int. J. Gynecol. Pathol. 2007, 26, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ren, X.; Li, W.; Cao, R.; Liu, S.; Jiang, L.; Cheng, B.; Xia, J. SPDEF Suppresses Head and Neck Squamous Cell Carcinoma Progression by Transcriptionally Activating NR4A1. Int. J. Oral. Sci. 2021, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.-B.; Zhou, S.-L.; Pang, X.-G.; Yin, D.; Miao, P.-Z.; Yang, Y.; Chen, Q.; Zhu, K.; Gao, D.-M.; Liu, T.-S.; et al. Prostate-Derived ETS Factor Improves Prognosis and Represses Proliferation and Invasion in Hepatocellular Carcinoma. Oncotarget 2017, 8, 52488–52500. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Tsai, Y.C.; Yeh, H.L.; Suau, F.; Jiang, K.C.; Shao, A.N.; Huang, J.; Liu, Y.N. Loss of SPDEF and Gain of TGFBI Activity after Androgen Deprivation Therapy Promote EMT and Bone Metastasis of Prostate Cancer. Sci. Signal 2017, 10, eaam6826. [Google Scholar] [CrossRef]
- Cheng, X.H.; Black, M.; Ustiyan, V.; Le, T.; Fulford, L.; Sridharan, A.; Medvedovic, M.; Kalinichenko, V.V.; Whitsett, J.A.; Kalin, T.V. SPDEF Inhibits Prostate Carcinogenesis by Disrupting a Positive Feedback Loop in Regulation of the Foxm1 Oncogene. PLoS Genet. 2014, 10, e1004656. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-C.; Chen, W.-Y.; Abou-Kheir, W.; Zeng, T.; Yin, J.J.; Bahmad, H.; Lee, Y.-C.; Liu, Y.-N. Androgen Deprivation Therapy-Induced Epithelial-Mesenchymal Transition of Prostate Cancer through Downregulating SPDEF and Activating CCL2. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, S.; Vourda, A.; Syggelos, S.; Gyftopoulos, K. Cell Plasticity and Prostate Cancer: The Role of Epithelial–Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers 2021, 13, 2795. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.K.; Saxena, R.; Groth, J.; Desouki, M.M.; Cheewakriangkrai, C.; Rodabaugh, K.J.; Kasyapa, C.S.; Geradts, J. Expression Characteristics of Prostate-Derived Ets Factor Support a Role in Breast and Prostate Cancer Progression. Hum. Pathol. 2007, 38, 1628–1638. [Google Scholar] [CrossRef] [PubMed]
- Ghadersohi, A.; Sharma, S.; Zhang, S.; Azrak, R.G.; Wilding, G.E.; Manjili, M.H.; Li, F. Prostate-derived Ets Transcription Factor (PDEF) Is a Potential Prognostic Marker in Patients with Prostate Cancer. Prostate 2011, 71, 1178–1188. [Google Scholar] [CrossRef]
- Gu, X.; Zerbini, L.F.; Otu, H.H.; Bhasin, M.; Yang, Q.; Joseph, M.G.; Grall, F.; Onatunde, T.; Correa, R.G.; Libermann, T.A. Reduced PDEF Expression Increases Invasion and Expression of Mesenchymal Genes in Prostate Cancer Cells. Cancer Res. 2007, 67, 4219–4226. [Google Scholar] [CrossRef]
- Turner, D.P.; Findlay, V.J.; Moussa, O.; Semenchenko, V.I.; Watson, P.M.; LaRue, A.C.; Desouki, M.M.; Fraig, M.; Watson, D.K. Mechanisms and Functional Consequences of PDEF Protein Expression Loss during Prostate Cancer Progression. Prostate 2011, 71, 1723–1735. [Google Scholar] [CrossRef]
- Meiners, J.; Schulz, K.; Möller, K.; Höflmayer, D.; Burdelski, C.; Hube-Magg, C.; Simon, R.; Göbel, C.; Hinsch, A.; Reiswich, V.; et al. Upregulation of SPDEF Is Associated with Poor Prognosis in Prostate Cancer. Oncol. Lett. 2019, 18, 5107–5118. [Google Scholar] [CrossRef]
- Chen, H.; Nandi, A.K.; Li, X.; Bieberich, C.J. NKX-3.1 Interacts with Prostate-Derived Ets Factor and Regulates the Activity of the PSA Promoter. Cancer Res. 2002, 62, 338–340. [Google Scholar]
- Tamura, R.E.; Paccez, J.D.; Duncan, K.C.; Morale, M.G.; Simabuco, F.M.; Dillon, S.; Correa, R.G.; Gu, X.; Libermann, T.A.; Zerbini, L.F. GADD45α and γ Interaction with CDK11p58 Regulates SPDEF Protein Stability and SPDEF-Mediated Effects on Cancer Cell Migration. Oncotarget 2016, 7, 13865–13879. [Google Scholar] [CrossRef]
- Gan, J.; Zeng, X.; Wang, X.; Wu, Y.; Lei, P.; Wang, Z.; Yang, C.; Hu, Z. Effective Diagnosis of Prostate Cancer Based on MRNAs From Urinary Exosomes. Front. Med. 2022, 9, 736110. [Google Scholar] [CrossRef]
- Feng, Y.; Huo, Q.; Li, B.-Y.; Yokota, H. Unveiling the Dichotomy of Urinary Proteins: Diagnostic Insights into Breast and Prostate Cancer and Their Roles. Proteomes 2023, 12, 1. [Google Scholar] [CrossRef]
- Donovan, M.J.; Noerholm, M.; Bentink, S.; Belzer, S.; Skog, J.; O’Neill, V.; Cochran, J.S.; Brown, G.A. A Molecular Signature of PCA3 and ERG Exosomal RNA from Non-DRE Urine Is Predictive of Initial Prostate Biopsy Result. Prostate Cancer Prostatic Dis. 2015, 18, 370–375. [Google Scholar] [CrossRef]
- Zabegina, L.; Zyatchin, I.; Kniazeva, M.; Shalaev, A.; Berkut, M.; Sharoyko, V.; Mikhailovskii, V.; Kondratov, K.; Reva, S.; Nosov, A.; et al. Diagnosis of Prostate Cancer through the Multi-Ligand Binding of Prostate-Derived Extracellular Vesicles and MiRNA Analysis. Life 2023, 13, 885. [Google Scholar] [CrossRef]
- Hatano, K.; Fujita, K. Extracellular Vesicles in Prostate Cancer: A Narrative Review. Transl. Androl. Urol. 2021, 10, 1890–1907. [Google Scholar] [CrossRef]
- Varisli, L.; Tolan, V.; Cen, J.H.; Vlahopoulos, S.; Cen, O. Dissecting the Effects of Androgen Deprivation Therapy on Cadherin Switching in Advanced Prostate Cancer: A Molecular Perspective. Oncol. Res. 2022, 30, 137–155. [Google Scholar] [CrossRef]
- Porzycki, P.; Ciszkowicz, E. Modern Biomarkers in Prostate Cancer Diagnosis. Cent. European J. Urol. 2020, 73, 300. [Google Scholar] [CrossRef]
- Tutrone, R.; Donovan, M.J.; Torkler, P.; Tadigotla, V.; McLain, T.; Noerholm, M.; Skog, J.; McKiernan, J. Clinical Utility of the Exosome Based ExoDx Prostate(IntelliScore) EPI Test in Men Presenting for Initial Biopsy with a PSA 2-10 Ng/ML. Prostate Cancer Prostatic Dis. 2020, 23, 607–614. [Google Scholar] [CrossRef]
- Duterque-Coquillaud, M.; Niel, C.; Plaza, S.; Stehelin, D. New Human Erg Isoforms Generated by Alternative Splicing Are Transcriptional Activators. Oncogene 1993, 8, 1865–1873. [Google Scholar]
- Tomlins, S.A.; Laxman, B.; Varambally, S.; Cao, X.; Yu, J.; Helgeson, B.E.; Cao, Q.; Prensner, J.R.; Rubin, M.A.; Shah, R.B.; et al. Role of the TMPRSS2-ERG Gene Fusion in Prostate Cancer. Neoplasia 2008, 10, 177-IN9. [Google Scholar] [CrossRef]
- Tomlins, S.A.; Rhodes, D.R.; Perner, S.; Dhanasekaran, S.M.; Mehra, R.; Sun, X.-W.; Varambally, S.; Cao, X.; Tchinda, J.; Kuefer, R.; et al. Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer. Science 2005, 310, 644–648. [Google Scholar] [CrossRef]
- Gupta, S.; Iljin, K.; Sara, H.; Mpindi, J.P.; Mirtti, T.; Vainio, P.; Rantala, J.; Alanen, K.; Nees, M.; Kallioniemi, O. FZD4 as a Mediator of ERG Oncogene–Induced WNT Signaling and Epithelial-to-Mesenchymal Transition in Human Prostate Cancer Cells. Cancer Res. 2010, 70, 6735–6745. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, J.C.; Kim, J.; Jin, H.-J.; Wang, C.-Y.; Yu, J. ERG Is a Critical Regulator of Wnt/LEF1 Signaling in Prostate Cancer. Cancer Res. 2013, 73, 6068–6079. [Google Scholar] [CrossRef]
- Wang, J.; Cai, Y.; Shao, L.; Siddiqui, J.; Palanisamy, N.; Li, R.; Ren, C.; Ayala, G.; Ittmann, M. Activation of NF-ΚB by TMPRSS2/ERG Fusion Isoforms through Toll-Like Receptor-4. Cancer Res. 2011, 71, 1325–1333. [Google Scholar] [CrossRef]
- Brase, J.C.; Johannes, M.; Mannsperger, H.; Fälth, M.; Metzger, J.; Kacprzyk, L.A.; Andrasiuk, T.; Gade, S.; Meister, M.; Sirma, H.; et al. TMPRSS2-ERG -Specific Transcriptional Modulation Is Associated with Prostate Cancer Biomarkers and TGF-β Signaling. BMC Cancer 2011, 11, 507. [Google Scholar] [CrossRef]
- Leshem, O.; Madar, S.; Kogan-Sakin, I.; Kamer, I.; Goldstein, I.; Brosh, R.; Cohen, Y.; Jacob-Hirsch, J.; Ehrlich, M.; Ben-Sasson, S.; et al. TMPRSS2/ERG Promotes Epithelial to Mesenchymal Transition through the ZEB1/ZEB2 Axis in a Prostate Cancer Model. PLoS ONE 2011, 6, e21650. [Google Scholar] [CrossRef]
- Afar, D.E.; Vivanco, I.; Hubert, R.S.; Kuo, J.; Chen, E.; Saffran, D.C.; Raitano, A.B.; Jakobovits, A. Catalytic Cleavage of the Androgen-Regulated TMPRSS2 Protease Results in Its Secretion by Prostate and Prostate Cancer Epithelia. Cancer Res. 2001, 61, 1686–1692. [Google Scholar]
- Klezovitch, O.; Risk, M.; Coleman, I.; Lucas, J.M.; Null, M.; True, L.D.; Nelson, P.S.; Vasioukhin, V. A Causal Role for ERG in Neoplastic Transformation of Prostate Epithelium. Proc. Natl. Acad. Sci. USA 2008, 105, 2105–2110. [Google Scholar] [CrossRef]
- Mulholland, D.J.; Kobayashi, N.; Ruscetti, M.; Zhi, A.; Tran, L.M.; Huang, J.; Gleave, M.; Wu, H. Pten Loss and RAS/MAPK Activation Cooperate to Promote EMT and Metastasis Initiated from Prostate Cancer Stem/Progenitor Cells. Cancer Res. 2012, 72, 1878–1889. [Google Scholar] [CrossRef]
- Jamaspishvili, T.; Berman, D.M.; Ross, A.E.; Scher, H.I.; De Marzo, A.M.; Squire, J.A.; Lotan, T.L. Clinical Implications of PTEN Loss in Prostate Cancer. Nat. Rev. Urol. 2018, 15, 222–234. [Google Scholar] [CrossRef]
- Manning, B.D.; Cantley, L.C. AKT/PKB Signaling: Navigating Downstream. Cell 2007, 129, 1261–1274. [Google Scholar] [CrossRef]
- Toker, A.; Marmiroli, S. Signaling Specificity in the Akt Pathway in Biology and Disease. Adv. Biol. Regul. 2014, 55, 28–38. [Google Scholar] [CrossRef]
- Fang, L.; Li, D.; Yin, J.; Pan, H.; Ye, H.; Bowman, J.; Capaldo, B.; Kelly, K. TMPRSS2-ERG Promotes the Initiation of Prostate Cancer by Suppressing Oncogene-Induced Senescence. Cancer Gene Ther. 2022, 29, 1463–1476. [Google Scholar] [CrossRef]
- Clark, J.; Attard, G.; Jhavar, S.; Flohr, P.; Reid, A.; De-Bono, J.; Eeles, R.; Scardino, P.; Cuzick, J.; Fisher, G.; et al. Complex Patterns of ETS Gene Alteration Arise during Cancer Development in the Human Prostate. Oncogene 2008, 27, 1993–2003. [Google Scholar] [CrossRef]
- Park, K.; Tomlins, S.A.; Mudaliar, K.M.; Chiu, Y.-L.; Esgueva, R.; Mehra, R.; Suleman, K.; Varambally, S.; Brenner, J.C.; MacDonald, T.; et al. Antibody-Based Detection of ERG Rearrangement-Positive Prostate Cancer. Neoplasia 2010, 12, 590-IN21. [Google Scholar] [CrossRef]
- Demichelis, F.; Setlur, S.R.; Beroukhim, R.; Perner, S.; Korbel, J.O.; Lafargue, C.J.; Pflueger, D.; Pina, C.; Hofer, M.D.; Sboner, A.; et al. Distinct Genomic Aberrations Associated with ERG Rearranged Prostate Cancer. Genes Chromosomes Cancer 2009, 48, 366–380. [Google Scholar] [CrossRef]
- Tomlins, S.A.; Mehra, R.; Rhodes, D.R.; Cao, X.; Wang, L.; Dhanasekaran, S.M.; Kalyana-Sundaram, S.; Wei, J.T.; Rubin, M.A.; Pienta, K.J.; et al. Integrative Molecular Concept Modeling of Prostate Cancer Progression. Nat. Genet. 2007, 39, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, J.; Li, C.; Giacomini, C.P.; Salari, K.; Huang, S.; Wang, P.; Ferrari, M.; Hernandez-Boussard, T.; Brooks, J.D.; Pollack, J.R. Genomic Profiling Reveals Alternative Genetic Pathways of Prostate Tumorigenesis. Cancer Res. 2007, 67, 8504–8510. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 162, 454. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef]
- Abou-Ouf, H.; Zhao, L.; Bismar, T.A. ERG Expression in Prostate Cancer: Biological Relevance and Clinical Implication. J. Cancer Res. Clin. Oncol. 2016, 142, 1781–1793. [Google Scholar] [CrossRef] [PubMed]
- Welti, J.; Rodrigues, D.N.; Sharp, A.; Sun, S.; Lorente, D.; Riisnaes, R.; Figueiredo, I.; Zafeiriou, Z.; Rescigno, P.; de Bono, J.S.; et al. Analytical Validation and Clinical Qualification of a New Immunohistochemical Assay for Androgen Receptor Splice Variant-7 Protein Expression in Metastatic Castration-Resistant Prostate Cancer. Eur. Urol. 2016, 70, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Dalton, J.T.; Narayanan, R.; Barbieri, C.E.; Hancock, M.L.; Bostwick, D.G.; Steiner, M.S.; Rubin, M.A. TMPRSS2:ERG Gene Fusion Predicts Subsequent Detection of Prostate Cancer in Patients with High-Grade Prostatic Intraepithelial Neoplasia. J. Clin. Oncol. 2014, 32, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Reig, Ò.; Marín-Aguilera, M.; Carrera, G.; Jiménez, N.; Paré, L.; García-Recio, S.; Gaba, L.; Pereira, M.V.; Fernández, P.; Prat, A.; et al. Corrigendum Re: “TMPRSS2-ERG in Blood and Docetaxel Resistance in Metastatic Castration-Resistant Prostate Cancer” [Eur Urol 2016;70:709-13]. Eur. Urol. 2017, 72, e49. [Google Scholar] [CrossRef]
- Galletti, G.; Matov, A.; Beltran, H.; Fontugne, J.; Miguel Mosquera, J.; Cheung, C.; MacDonald, T.Y.; Sung, M.; O’Toole, S.; Kench, J.G.; et al. ERG Induces Taxane Resistance in Castration-Resistant Prostate Cancer. Nat. Commun. 2014, 5, 5548. [Google Scholar] [CrossRef]
- Eldhose, B.; Pandrala, M.; Xavier, C.; Mohamed, A.A.; Srivastava, S.; Sunkara, A.D.; Dobi, A.; Malhotra, S. V New Selective Inhibitors of ERG Positive Prostate Cancer: ERGi-USU-6 Salt Derivatives. ACS Med. Chem. Lett. 2021, 12, 1703–1709. [Google Scholar] [CrossRef]
- Butler, M.S.; Roshan-Moniri, M.; Hsing, M.; Lau, D.; Kim, A.; Yen, P.; Mroczek, M.; Nouri, M.; Lien, S.; Axerio-Cilies, P.; et al. Discovery and Characterization of Small Molecules Targeting the DNA-Binding ETS Domain of ERG in Prostate Cancer. Oncotarget 2017, 8, 42438–42454. [Google Scholar] [CrossRef] [PubMed]
- Nhili, R.; Peixoto, P.; Depauw, S.; Flajollet, S.; Dezitter, X.; Munde, M.M.; Ismail, M.A.; Kumar, A.; Farahat, A.A.; Stephens, C.E.; et al. Targeting the DNA-Binding Activity of the Human ERG Transcription Factor Using New Heterocyclic Dithiophene Diamidines. Nucleic Acids Res. 2013, 41, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Selvanathan, S.P.; Moseley, E.; Graham, G.T.; Jessen, K.; Lannutti, B.; Üren, A.; Toretsky, J.A. TK-216: A Novel, First-in-Class, Small Molecule Inhibitor of EWS-FLI1 in Early Clinical Development, for the Treatment of Ewing Sarcoma. Cancer Res. 2017, 77, 694. [Google Scholar] [CrossRef]
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination and Degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef] [PubMed]
- Burslem, G.M.; Crews, C.M. Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell 2020, 181, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Kahn, B.; Collazo, J.; Kyprianou, N. Androgen Receptor as a Driver of Therapeutic Resistance in Advanced Prostate Cancer. Int. J. Biol. Sci. 2014, 10, 588. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.A.; Grossmann, M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev. 2016, 37, 3. [Google Scholar]
- Tan, M.H.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E. Androgen Receptor: Structure, Role in Prostate Cancer and Drug Discovery. Acta Pharmacol. Sin. 2015, 36, 3–23. [Google Scholar] [CrossRef]
- Van der Steen, T.; Tindall, D.J.; Huang, H. Posttranslational Modification of the Androgen Receptor in Prostate Cancer. Int. J. Mol. Sci. 2013, 14, 14833–14859. [Google Scholar] [CrossRef]
- Feng, Q.; He, B. Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer. Front. Oncol. 2019, 9, 858. [Google Scholar] [CrossRef]
- Fujita, K.; Nonomura, N. Role of Androgen Receptor in Prostate Cancer: A Review. World J. Mens. Health 2019, 37, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.G.; Hickey, T.E.; Irvine, C.; Wijayakumara, D.D.; Lu, L.; Tilley, W.D.; Selth, L.A.; Mackenzie, P.I. Identification of Androgen Receptor Splice Variant Transcripts in Breast Cancer Cell Lines and Human Tissues. Horm. Cancer 2014, 5, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Culig, Z. Androgen Receptor Coactivators in Regulation of Growth and Differentiation in Prostate Cancer. J. Cell Physiol. 2016, 231, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, C.; Wang, K.; Liu, L.; Shen, Q.; Yan, K.; Sun, X.; Chen, J.; Liu, J.; Ren, H. SMYD3 as an Oncogenic Driver in Prostate Cancer by Stimulation of Androgen Receptor Transcription. J. Natl. Cancer Inst. 2013, 105, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452. [Google Scholar] [CrossRef]
- Liu, S.; Kumari, S.; Hu, Q.; Senapati, D.; Venkadakrishnan, V.B.; Wang, D.; DePriest, A.D.; Schlanger, S.E.; Ben-Salem, S.; Valenzuela, M.M. A Comprehensive Analysis of Coregulator Recruitment, Androgen Receptor Function and Gene Expression in Prostate Cancer. Elife 2017, 6, e28482. [Google Scholar] [CrossRef] [PubMed]
- Stelloo, S.; Nevedomskaya, E.; van der Poel, H.G.; de Jong, J.; van Leenders, G.J.L.H.; Jenster, G.; Wessels, L.F.A.; Bergman, A.M.; Zwart, W. Androgen Receptor Profiling Predicts Prostate Cancer Outcome. EMBO Mol. Med. 2015, 7, 1450–1464. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Dunn, T.A.; Wei, S.; Isharwal, S.; Veltri, R.W.; Humphreys, E.; Han, M.; Partin, A.W.; Vessella, R.L.; Isaacs, W.B.; et al. Ligand-Independent Androgen Receptor Variants Derived from Splicing of Cryptic Exons Signify Hormone-Refractory Prostate Cancer. Cancer Res. 2009, 69, 16–22. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef]
- Koo, K.C.; Lee, J.S.; Ha, J.S.; Han, K.S.; Lee, K.S.; Hah, Y.S.; Rha, K.H.; Hong, S.J.; Chung, B.H. Optimal Sequencing Strategy Using Docetaxel and Androgen Receptor Axis-Targeted Agents in Patients with Castration-Resistant Prostate Cancer: Utilization of Neutrophil-to-Lymphocyte Ratio. World J. Urol. 2019, 37, 2375–2384. [Google Scholar] [CrossRef]
- Scher, H.I.; Graf, R.P.; Schreiber, N.A.; Jayaram, A.; Winquist, E.; McLaughlin, B.; Lu, D.; Fleisher, M.; Orr, S.; Lowes, L.; et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol. 2018, 4, 1179. [Google Scholar] [CrossRef] [PubMed]
- Yedla, P.; Babalghith, A.O.; Andra, V.V.; Syed, R. PROTACs in the Management of Prostate Cancer. Molecules 2023, 28, 3698. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zou, J.X.; Xue, X.; Cai, D.; Zhang, Y.; Duan, Z.; Xiang, Q.; Yang, J.C.; Louie, M.C.; Borowsky, A.D.; et al. ROR-γ Drives Androgen Receptor Expression and Represents a Therapeutic Target in Castration-Resistant Prostate Cancer. Nat. Med. 2016, 22, 488–496. [Google Scholar] [CrossRef]
- Yamada, Y.; Beltran, H. Clinical and Biological Features of Neuroendocrine Prostate Cancer. Curr. Oncol. Rep. 2021, 23, 15. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.-C.; Veeramani, S.; Lin, M.-F. Neuroendocrine-like Prostate Cancer Cells: Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Cells. Endocr. Relat. Cancer 2007, 14, 531–547. [Google Scholar] [CrossRef] [PubMed]
- Beltran, H.; Rickman, D.S.; Park, K.; Chae, S.S.; Sboner, A.; MacDonald, T.Y.; Wang, Y.; Sheikh, K.L.; Terry, S.; Tagawa, S.T.; et al. Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discov. 2011, 1, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.Y.; Rosario, S.; Wang, Y.; Mu, P.; Seshadri, M.; Goodrich, Z.W.; Goodrich, M.M.; Labbé, D.P.; Gomez, E.C.; Wang, J.; et al. Rb1 and Trp53 Cooperate to Suppress Prostate Cancer Lineage Plasticity, Metastasis, and Antiandrogen Resistance. Science 2017, 355, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Rotinen, M.; You, S.; Yang, J.; Coetzee, S.G.; Reis-Sobreiro, M.; Huang, W.-C.; Huang, F.; Pan, X.; Yáñez, A.; Hazelett, D.J.; et al. ONECUT2 Is a Targetable Master Regulator of Lethal Prostate Cancer That Suppresses the Androgen Axis. Nat. Med. 2018, 24, 1887–1898. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ci, X.; Ahmed, M.; Hua, J.T.; Soares, F.; Lin, D.; Puca, L.; Vosoughi, A.; Xue, H.; Li, E.; et al. ONECUT2 Is a Driver of Neuroendocrine Prostate Cancer. Nat. Commun. 2019, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Nouruzi, S.; Ganguli, D.; Tabrizian, N.; Kobelev, M.; Sivak, O.; Namekawa, T.; Thaper, D.; Baca, S.C.; Freedman, M.L.; Aguda, A.; et al. ASCL1 Activates Neuronal Stem Cell-like Lineage Programming through Remodeling of the Chromatin Landscape in Prostate Cancer. Nat. Commun. 2022, 13, 2282. [Google Scholar] [CrossRef]
- Duan, R.; Du, W.; Guo, W. EZH2: A Novel Target for Cancer Treatment. J. Hematol. Oncol. 2020, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Schultz, R.M. SOX2 Modulates Reprogramming of Gene Expression in Two-Cell Mouse Embryos1. Biol. Reprod. 2011, 85, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, L.; Li, Z.; Geng, X.; Li, M.; Tang, Q.; Wu, C.; Lu, Z. SOX2 Has Dual Functions as a Regulator in the Progression of Neuroendocrine Prostate Cancer. Lab. Investig. 2020, 100, 570–582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xiong, X.; Sun, Y. Functional Characterization of SOX2 as an Anticancer Target. Signal Transduct. Target. Ther. 2020, 5, 135. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Hollenberg, S.M.; Snider, L.; Turner, D.L.; Lipnick, N.; Weintraub, H. Conversion of Xenopus Ectoderm into Neurons by NeuroD, a Basic Helix-Loop-Helix Protein. Science 1995, 268, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Borromeo, M.D.; Savage, T.K.; Kollipara, R.K.; He, M.; Augustyn, A.; Osborne, J.K.; Girard, L.; Minna, J.D.; Gazdar, A.F.; Cobb, M.H.; et al. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep. 2016, 16, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Cejas, P.; Xie, Y.; Font-Tello, A.; Lim, K.; Syamala, S.; Qiu, X.; Tewari, A.K.; Shah, N.; Nguyen, H.M.; Patel, R.A.; et al. Subtype Heterogeneity and Epigenetic Convergence in Neuroendocrine Prostate Cancer. Nat. Commun. 2021, 12, 5775. [Google Scholar] [CrossRef] [PubMed]
- Milde-Langosch, K. The Fos Family of Transcription Factors and Their Role in Tumourigenesis. Eur. J. Cancer 2005, 41, 2449–2461. [Google Scholar] [CrossRef]
- Zerbini, L.F.; de Vasconcellos, J.F.; Czibere, A.; Wang, Y.; Paccez, J.D.; Gu, X.; Zhou, J.-R.; Libermann, T.A. JunD-Mediated Repression of GADD45α and γ Regulates Escape from Cell Death in Prostate Cancer. Cell Cycle 2011, 10, 2583–2591. [Google Scholar] [CrossRef]
- Zhang, H.; Pei, L.; Ouyang, Z.; Wang, H.; Chen, X.; Jiang, K.; Huang, S.; Jiang, R.; Xiang, Y.; Wei, K. AP-1 Activation Mediates Post-Natal Cardiomyocyte Maturation. Cardiovasc. Res. 2023, 119, 536–550. [Google Scholar] [CrossRef] [PubMed]
- Lin-Tsai, O.; Clark, P.E.; Miller, N.L.; Fowke, J.H.; Hameed, O.; Hayward, S.W.; Strand, D.W. Surgical Intervention for Symptomatic Benign Prostatic Hyperplasia Is Correlated with Expression of the AP-1 Transcription Factor Network. Prostate 2014, 74, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Riedel, M.; Cai, H.; Stoltze, I.C.; Vendelbo, M.H.; Wagner, E.F.; Bakiri, L.; Thomsen, M.K. Targeting AP-1 Transcription Factors by CRISPR in the Prostate. Oncotarget 2021, 12, 1956–1961. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.K.; Bakiri, L.; Hasenfuss, S.C.; Wu, H.; Morente, M.; Wagner, E.F. Loss of JUNB/AP-1 Promotes Invasive Prostate Cancer. Cell Death Differ. 2015, 22, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Kajanne, R.; Miettinen, P.; Tenhunen, M.; Leppä, S. Transcription Factor AP-1 Promotes Growth and Radioresistance in Prostate Cancer Cells. Int. J. Oncol. 2009, 35, 1175–1182. [Google Scholar] [PubMed]
- Tewari, D.; Nabavi, S.F.; Nabavi, S.M.; Sureda, A.; Farooqi, A.A.; Atanasov, A.G.; Vacca, R.A.; Sethi, G.; Bishayee, A. Targeting Activator Protein 1 Signaling Pathway by Bioactive Natural Agents: Possible Therapeutic Strategy for Cancer Prevention and Intervention. Pharmacol. Res. 2018, 128, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Cai, C.; Fisher, C.J.; Zheng, Z.; Omwancha, J.; Hsieh, C.-L.; Shemshedini, L. C-Jun Enhancement of Androgen Receptor Transactivation Is Associated with Prostate Cancer Cell Proliferation. Oncogene 2006, 25, 7212–7223. [Google Scholar] [CrossRef] [PubMed]
- Konishi, N.; Shimada, K.; Nakamura, M.; Ishida, E.; Ota, I.; Tanaka, N.; Fujimoto, K. Function of JunB in Transient Amplifying Cell Senescence and Progression of Human Prostate Cancer. Clin. Cancer Res. 2008, 14, 4408–4416. [Google Scholar] [CrossRef]
- Eferl, R.; Wagner, E.F. AP-1: A Double-Edged Sword in Tumorigenesis. Nat. Rev. Cancer 2003, 3, 859–868. [Google Scholar] [CrossRef]
- Edwards, J.; Krishna, N.S.; Mukherjee, R.; Bartlett, J.M. The Role of C-Jun and C-Fos Expression in Androgen-independent Prostate Cancer. J. Pathol. 2004, 204, 153–158. [Google Scholar] [CrossRef]
- Kavya, K.; Kumar, M.N.; Patil, R.H.; Hegde, S.M.; Kiran Kumar, K.M.; Nagesh, R.; Babu, R.L.; Ramesh, G.T.; Chidananda Sharma, S. Differential Expression of AP-1 Transcription Factors in Human Prostate LNCaP and PC-3 Cells: Role of Fra-1 in Transition to CRPC Status. Mol. Cell Biochem. 2017, 433, 13–26. [Google Scholar] [CrossRef]
- Zerbini, L.F.; Wang, Y.; Cho, J.Y.; Libermann, T.A. Constitutive Activation of Nuclear Factor KappaB P50/P65 and Fra-1 and JunD Is Essential for Deregulated Interleukin 6 Expression in Prostate Cancer. Cancer Res. 2003, 63, 2206–2215. [Google Scholar] [CrossRef]
- Twillie, D.A.; Eisenberger, M.A.; Carducci, M.A.; Hseih, W.S.; Kim, W.Y.; Simons, J.W. Interleukin-6: A Candidate Mediator of Human Prostate Cancer Morbidity. Urology 1995, 45, 542–549. [Google Scholar] [CrossRef]
- Drachenberg, D.E.; Elgamal, A.A.; Rowbotham, R.; Peterson, M.; Murphy, G.P. Circulating Levels of Interleukin-6 in Patients with Hormone Refractory Prostate Cancer. Prostate 1999, 41, 127–133. [Google Scholar] [CrossRef]
- Karin, M. Inflammation-Activated Protein Kinases as Targets for Drug Development. Proc. Am. Thorac. Soc. 2005, 2, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Ding, Y.; Wild, C.; Shen, Q.; Zhou, J. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1). J. Med. Chem. 2014, 57, 6930–6948. [Google Scholar] [CrossRef] [PubMed]
- Shaulian, E.; Karin, M. AP-1 as a Regulator of Cell Life and Death. Nat. Cell Biol. 2002, 4, E131–E136. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Bueso-Ramos, C.; Chatterjee, D.; Pantazis, P.; Aggarwal, B.B. Curcumin Downregulates Cell Survival Mechanisms in Human Prostate Cancer Cell Lines. Oncogene 2001, 20, 7597–7609. [Google Scholar] [CrossRef]
- Teiten, M.-H.; Gaascht, F.; Eifes, S.; Dicato, M.; Diederich, M. Chemopreventive Potential of Curcumin in Prostate Cancer. Genes. Nutr. 2010, 5, 61–74. [Google Scholar] [CrossRef]
- Abd. Wahab, N.A.; H. Lajis, N.; Abas, F.; Othman, I.; Naidu, R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients 2020, 12, 679. [Google Scholar] [CrossRef]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-ΚB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, T.D. NF-ΚB and Human Cancer: What Have We Learned over the Past 35 Years? Biomedicines 2021, 9, 889. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-ΚB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef]
- Sun, S.C. The Noncanonical NF-ΚB Pathway. Immunol. Rev. 2012, 246, 125–140. [Google Scholar] [CrossRef] [PubMed]
- van Delft, M.A.M.; Huitema, L.F.A.; Tas, S.W. The Contribution of NF-ΚB Signalling to Immune Regulation and Tolerance. Eur. J. Clin. Investig. 2015, 45, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Yi, Y.; Yull, F.E.; Blackwell, T.S.; Clark, P.E.; Koyama, T.; Smith, J.A.; Matusik, R.J. Nf-Kb Gene Signature Predicts Prostate Cancer Progression. Cancer Res. 2014, 74, 2763–2772. [Google Scholar] [CrossRef]
- Staal, J.; Beyaert, R. Inflammation and NF-ΚB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018, 7, 122. [Google Scholar] [CrossRef] [PubMed]
- Zerbini, L.F.; Wang, Y.; Czibere, A.; Correa, R.G.; Cho, J.-Y.; Ijiri, K.; Wei, W.; Joseph, M.; Gu, X.; Grall, F.; et al. NF-B-Mediated Repression of Growth Arrest-and DNA-Damage-Inducible Proteins 45 and Is Essential for Cancer Cell Survival. Proc. Natl. Acad. Sci. USA 2004, 101, 13618–13623. [Google Scholar] [CrossRef]
- Grosset, A.A.; Ouellet, V.; Caron, C.; Fragoso, G.; Barrès, V.; Delvoye, N.; Latour, M.; Aprikian, A.; Bergeron, A.; Chevalier, S.; et al. Validation of the Prognostic Value of NF-ΚB P65 in Prostate Cancer: A Retrospective Study Using a Large Multi-Institutional Cohort of the Canadian Prostate Cancer Biomarker Network. PLoS Med. 2019, 16, e1002847. [Google Scholar] [CrossRef]
- Jeong, J.H.; Park, S.J.; Dickinson, S.I.; Luo, J.L. A Constitutive Intrinsic Inflammatory Signaling Circuit Composed of MiR-196b, Meis2, PPP3CC, and P65 Drives Prostate Cancer Castration Resistance. Mol. Cell 2017, 65, 154–167. [Google Scholar] [CrossRef]
- Wang, X.; Xuetao, X.; Wu, M.; Wu, P.; Sheng, Z.; Liu, W.; Ma, Y.Y.; Zhao, D.G.; Zhang, K.; Li, D.; et al. Inhibitory Effect of Roburic Acid in Combination with Docetaxel on Human Prostate Cancer Cells. J. Enzyme Inhib. Med. Chem. 2022, 37, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, M.S.; Turchan, W.T.; Alpuche, M.E.; Watson, C.N.; Estabrook, N.C.; Chin-Sinex, H.; Shapiro, J.B.; Imasuen-Williams, I.E.; Rangel, G.; Gilley, D.P.; et al. DMAPT Inhibits NF-ΚB Activity and Increases Sensitivity of Prostate Cancer Cells to X-Rays in Vitro and in Tumor Xenografts in Vivo. Free Radic. Biol. Med. 2017, 112, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Morel, K.L.; Hamid, A.A.; Clohessy, J.G.; Pandell, N.; Ellis, L.; Sweeney, C.J. NF-KB Blockade with Oral Administration of Dimethylaminoparthenolide (DMAPT), Delays Prostate Cancer Resistance to Androgen Receptor (AR) Inhibition and Inhibits AR Variants. Mol. Cancer Res. 2021, 19, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Zhu, J.; Ren, C.; Zhao, A.; Zhang, M.; Zhu, Z.; Lu, X.; Zhang, Y.; Li, X.; Sima, X.; et al. β-Elemonic Acid Inhibits Growth and Triggers Apoptosis in Human Castration-Resistant Prostate Cancer Cells through the Suppression of JAK2/STAT3/MCL-1 and NF-ĸB Signal Pathways. Chem. Biol. Interact. 2021, 342, 109477. [Google Scholar] [CrossRef] [PubMed]
- Gearhart, J.; Pashos, E.E.; Prasad, M.K. Pluripotency Redux—Advances in Stem-Cell Research. N. Engl. J. Med. 2007, 357, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC Oncogene —the Grand Orchestrator of Cancer Growth and Immune Evasion. Nat. Rev. Clin. Oncol. 2022, 19, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Diolaiti, D.; McFerrin, L.; Carroll, P.A.; Eisenman, R.N. Functional Interactions among Members of the MAX and MLX Transcriptional Network during Oncogenesis. Biochim. Biophys. Acta Gene Regul. Mech. 2015, 1849, 484–500. [Google Scholar] [CrossRef] [PubMed]
- Alshalalfa, M.; Nguyen, T.T.; Stopsack, K.H.; Khan, A.; Franco, I.; Seldon, C.; Swami, N.; Jin, W.; Meiyappan, K.; Ton, M.; et al. Chromosome 8q Arm Overexpression Is Associated with Worse Prostate Cancer Prognosis. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 106-e17. [Google Scholar] [CrossRef] [PubMed]
- Mahal, B.A.V.; Zhang, L.; Alshalalfa, M.; Graf, R.; Tukachinsky, H.; Huang, R.S.P.; McGregor, K.; Schrock, A.B.; Venstrom, J.M. Molecular, Immunologic, and Clinicodemographic Landscape of MYC-Amplified (MYCamp) Advanced Prostate Cancer (PCa). J. Clin. Oncol. 2021, 39. [Google Scholar] [CrossRef]
- Zimmerman, R.; Bilen, M.A.; Heath, E.I.; Nandagopal, L.; Swami, U.; Kessel, A.; Jaeger, E.; Wesolowski, S.; Hernanadez, E.J.; Chipman, J.; et al. Comprehensive Genomic Profiling of Cell-Free DNA in Men with Advanced Prostate Cancer: Differences in Genomic Landscape Based on Race. Oncologist 2022, 27, e815–e818. [Google Scholar] [CrossRef]
- Gurel, B.; Iwata, T.; Koh, C.M.; Jenkins, R.B.; Lan, F.; Van Dang, C.; Hicks, J.L.; Morgan, J.; Cornish, T.C.; Sutcliffe, S.; et al. Nuclear MYC Protein Overexpression Is an Early Alteration in Human Prostate Carcinogenesis. Mod. Pathol. 2008, 21, 1156–1167. [Google Scholar] [CrossRef]
- Ellwood-Yen, K.; Graeber, T.G.; Wongvipat, J.; Iruela-Arispe, M.L.; Zhang, J.F.; Matusik, R.; Thomas, G.V.; Sawyers, C.L. Myc-Driven Murine Prostate Cancer Shares Molecular Features with Human Prostate Tumors. Cancer Cell 2003, 4, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, N.F.; Aneas, I.; Nobrega, M.A. An 8q24 Gene Desert Variant Associated with Prostate Cancer Risk Confers Differential In Vivo Activity to a MYC Enhancer. Genome Res. 2010, 20, 1191–1197. [Google Scholar] [CrossRef]
- Matejcic, M.; Saunders, E.J.; Dadaev, T.; Brook, M.N.; Wang, K.; Sheng, X.; Olama, A.A.; Schumacher, F.R.; Ingles, S.A.; Govindasami, K.; et al. Germline Variation at 8q24 and Prostate Cancer Risk in Men of European Ancestry. Nat. Commun. 2018, 9, 4616. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Behr, S.C.; Paris, P.L.; Truillet, C.; Parker, M.F.L.; Huynh, L.T.; Wei, J.; Hann, B.; Youngren, J.; Huang, J.; et al. Real-Time Transferrin-Based PET Detects MYC Positive Prostate Cancer. Mol. Cancer Res. 2017, 15, 1221–1229. [Google Scholar] [CrossRef]
- Casadio, V.; Calistri, D.; Salvi, S.; Gunelli, R.; Carretta, E.; Amadori, D.; Silvestrini, R.; Zoli, W. Urine Cell-Free DNA Integrity as a Marker for Early Prostate Cancer Diagnosis: A Pilot Study. Biomed. Res. Int. 2013, 2013, 270457. [Google Scholar] [CrossRef] [PubMed]
- Sonpavde, G.; Agarwal, N.; Pond, G.R.; Nagy, R.J.; Nussenzveig, R.H.; Hahn, A.W.; Sartor, O.; Gourdin, T.S.; Nandagopal, L.; Ledet, E.M.; et al. Circulating Tumor DNA Alterations in Patients with Metastatic Castration-Resistant Prostate Cancer. Cancer 2019, 125, 1459–1469. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Swaminathan, R. Structure and Dynamics at N- and C-terminal Regions of Intrinsically Disordered Human c-Myc PEST Degron Reveal a PH-Induced Transition. Proteins Struct. Funct. Bioinform. 2020, 88, 889–909. [Google Scholar] [CrossRef]
- Weber, L.I.; Hartl, M. Strategies to Target the Cancer Driver MYC in Tumor Cells. Front. Oncol. 2023, 13, 1142111. [Google Scholar] [CrossRef]
- Llombart, V.; Mansour, M.R. Therapeutic Targeting of “Undruggable” MYC. EBioMedicine 2022, 75, 103756. [Google Scholar] [CrossRef]
- D’avola, A.; Kluckova, K.; Finch, A.J.; Riches, J.C. Spotlight on New Therapeutic Opportunities for MYC-Driven Cancers. Onco Targets Ther. 2023, 16, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Bahls, B.; Aljnadi, I.M.; Emídio, R.; Mendes, E.; Paulo, A. G-Quadruplexes in c-MYC Promoter as Targets for Cancer Therapy. Biomedicines 2023, 11, 969. [Google Scholar] [CrossRef] [PubMed]
- Khot, A.; Brajanovski, N.; Cameron, D.P.; Hein, N.; Maclachlan, K.H.; Sanij, E.; Lim, J.; Soong, J.; Link, E.; Blombery, P.; et al. First-in-Human RNA Polymerase I Transcription Inhibitor CX-5461 in Patients with Advanced Hematologic Cancers: Results of a Phase I Dose-Escalation Study. Cancer Discov. 2019, 9, 1036–1049. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.R.; Schweizer, M.T.; Nanus, D.M.; Pantuck, A.J.; Heath, E.I.; Campeau, E.; Attwell, S.; Norek, K.; Snyder, M.; Bauman, L.; et al. A Phase Ib/IIa Study of the Pan-BET Inhibitor ZEN-3694 in Combination with Enzalutamide in Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2020, 26, 5338–5347. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Wang, H.; Yap, J.L.; Sabato, P.E.; Hu, A.; Prochownik, E.V.; Fletcher, S. Discovery of Methyl 4′-Methyl-5-(7-Nitrobenzo[c][1,2,5]Oxadiazol-4-Yl)-[1,1′-Biphenyl]-3-Carboxylate, an Improved Small-Molecule Inhibitor of c-Myc-Max Dimerization. ChemMedChem 2014, 9, 2274–2285. [Google Scholar] [CrossRef]
- Chalfant, V.; Riveros, C.; Shukla, S.; Osumi, T.; Balaji, K. 3JC48-3: Novel MYC Inhibition in Advanced Prostate Cancer. J. Clin. Oncol. 2022, 40, 181. [Google Scholar] [CrossRef]
- Shukla, S.; Fletcher, S.; Chauhan, J.; Chalfant, V.; Riveros, C.; Mackeyev, Y.; Singh, P.K.; Krishnan, S.; Osumi, T.; Balaji, K.C. 3JC48-3 (Methyl4′-Methyl-5-(7-Nitrobenzo[c][1,2,5]Oxadiazol-4-Yl)-[1,1′-Biphenyl]-3-Carboxylate): A Novel MYC/MAX Dimerization Inhibitor Reduces Prostate Cancer Growth. Cancer Gene Ther. 2022, 29, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.G.; Parker, J.B.; Sagar, V.; Truica, M.I.; Soni, P.N.; Han, H.; Schiltz, G.E.; Abdulkadir, S.A.; Chakravarti, D. A MYC Inhibitor Selectively Alters the MYC and MAX Cistromes and Modulates the Epigenomic Landscape to Regulate Target Gene Expression. Sci. Adv. 2022, 8, eabh3635. [Google Scholar] [CrossRef]
- Massó-Vallés, D.; Soucek, L. Blocking Myc to Treat Cancer: Reflecting on Two Decades of Omomyc. Cells 2020, 9, 883. [Google Scholar] [CrossRef]
- Savino, M.; Annibali, D.; Carucci, N.; Favuzzi, E.; Cole, M.D.; Evan, G.I.; Soucek, L.; Nasi, S. The Action Mechanism of the Myc Inhibitor Termed Omomyc May Give Clues on How to Target Myc for Cancer Therapy. PLoS ONE 2011, 6, e22284. [Google Scholar] [CrossRef]
- Jung, L.A.; Gebhardt, A.; Koelmel, W.; Ade, C.P.; Walz, S.; Kuper, J.; Von Eyss, B.; Letschert, S.; Redel, C.; D’Artista, L.; et al. OmoMYC Blunts Promoter Invasion by Oncogenic MYC to Inhibit Gene Expression Characteristic of MYC-Dependent Tumors. Oncogene 2017, 36, 1911–1924. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Pradeep, S.P.; Kumar, V.; Xiao, Y.; Deng, Y.; Fan, R.; Vasquez, J.C.; Singh, V.; Bahal, R. Antitumor Efficacy of a Sequence-Specific DNA-Targeted ΓPNA-Based c-Myc Inhibitor. Cell Rep. Med. 2024, 5, 101354. [Google Scholar] [CrossRef] [PubMed]
- Labbé, D.P.; Zadra, G.; Yang, M.; Reyes, J.M.; Lin, C.Y.; Cacciatore, S.; Ebot, E.M.; Creech, A.L.; Giunchi, F.; Fiorentino, M.; et al. High-Fat Diet Fuels Prostate Cancer Progression by Rewiring the Metabolome and Amplifying the MYC Program. Nat. Commun. 2019, 10, 4358. [Google Scholar] [CrossRef] [PubMed]
Study ID | TF | Treatment | Phase | Status | Application of TF in the Study |
---|---|---|---|---|---|
NCT04689828 | AR | 177Lu-PSMA-617/68Ga-PSMA-11/ARDT | Phase III | Active/not recruiting | Comparison of 177Lu-PSMA-617 vs. a change in androgen-receptor-directed therapy in the Treatment of taxane-naïve men with progressive mCRPC |
NCT04720157 | AR | 177Lu-PSMA-617/68Ga-PSMA-11/ARDT/ADT | Phase III | Active/not recruiting | In the study, the SoC is defined as a combination of ARDT + ADT |
NCT05352178 | AR | ADT/AR targeted therapy/radiotherapy and/or surgery | Phase III | Recruiting | Adjustment of ADT treatment cycles in PMFS and/or mCRPCFS patients |
NCT05191680 | AR | Apalutamide/placebo | Phase III | Recruiting | Use of short-term androgen deprivation therapy in the form of apalutamide (Erleada) in men in active surveillance for prostate cancer |
NCT03601143 | AR | Observational study | N/A | Recruiting | Determines the optimal method to determine AR-V7 status. Also investigates AR-V7-independent mechanisms of resistance and their predictive value for proper treatment |
NCT04647526 | AR | [Lu-177]-PNT2002/Abiraterone/Enzalutamide | Phase III | Active/not recruiting | Evaluates the efficacy and safety of [Lu-177]-PNT2002 in patients with metastatic mCRPC who have progressed following treatment with ARAT |
NCT06136650 | AR | MK-5684/dexamethasone/fludrocortisone acetate/hydrocortisone/Abiraterone acetate/prednisone acetate/Enzalutamide | Phase III | Recruiting | Study of MK-5684 versus alternative NHA in mCRPC post one NHA (MK-5684-004) |
NCT03665922 | MYC/AR | BroccoMax/placebo | N/A | Active/not recruiting | MYC and AR as a marker to evaluate prostate adenocarcinoma |
NCT04601441 | MYC/ERG | Apalutamide | Phase IV | Recruiting | Evaluation of genomic alterations of 73 PCa driver genes between pre- and posttreatment |
NCT02573636 | ERG | Observational study | N/A | Recruiting | Evaluates the predictive value of TMPRSS2-ERG gene fusion in patients with high-risk Pca treated with first-line LHRHa after biochemical failure |
NCT05612880 | AR | Observational study | N/A | Recruiting | Observational study for the determination of longitudinal effects of androgen receptor signaling inhibitors (ARSI) in men with advanced PCa |
NCT04484818 | AR | Darolutamide/Goserelin acetate/Leuprolide acetate/placebo/Triptorelin | Phase III | Active/not recruiting | Androgen receptor activity as a prognostic signature |
NCT05819606 | AR | Observational study/immunohistochemistry analysis | N/A | Not yet recruiting | AR expression as a tool to evaluate the progress of the treatment |
NCT04769817 | AR/ERG | Observational study | N/A | Recruiting | AR as a prognostic biomarker |
NCT03903835 | AR/ERG | Enzalutamidde/Abiraterone/Carboplatin/Cabazitaxel/Docetaxel/Radium Chloride Ra223/Niraparib + Abiraterone + Prednisone/Capivasertib+Docetaxel/Apalutamide/Darolutamide | Phase III | Recruiting | Androgen receptor as a biomarker signature |
NCT03784924 | ERG | MRI (diagnostics)/Observational study | N/A | Recruiting | ERG used in the study as a diagnostic tool |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, K.C.S.; Tambwe, N.; Mahfouz, D.H.; Wium, M.; Cacciatore, S.; Paccez, J.D.; Zerbini, L.F. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes 2024, 15, 450. https://doi.org/10.3390/genes15040450
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes. 2024; 15(4):450. https://doi.org/10.3390/genes15040450
Chicago/Turabian StyleSilva, Karla C. S., Nadine Tambwe, Dalia H. Mahfouz, Martha Wium, Stefano Cacciatore, Juliano D. Paccez, and Luiz F. Zerbini. 2024. "Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches" Genes 15, no. 4: 450. https://doi.org/10.3390/genes15040450
APA StyleSilva, K. C. S., Tambwe, N., Mahfouz, D. H., Wium, M., Cacciatore, S., Paccez, J. D., & Zerbini, L. F. (2024). Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes, 15(4), 450. https://doi.org/10.3390/genes15040450