Skip to main content

Advertisement

Log in

Dimethylfumarate for Psoriasis

Pronounced Effects on Lesional T-Cell Subsets, Epidermal Proliferation and Differentiation, but not on Natural Killer T Cells in Immunohistochemical Study

  • Original Research Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Background: T-cell infiltration, epidermal hyperproliferation, and disturbed keratinization are pathologic hallmarks of plaque psoriasis. Oral fumaric acid esters are an effective therapy for psoriasis and are believed to exert their effects mainly through their anti-inflammatory properties.

Objective: To investigate the differential effects of dimethylfumarate (BG-12; FAG-201) for psoriasis on lesional T-cell subsets, natural killer (NK) T cells, and keratinocyte hyperproliferation and differentiation.

Study Design: A before-and-after clinical and immunohistochemical study as part of a larger clinical trial.

Setting: Single outpatient clinic.

Patients: Six patients with moderate-to-severe psoriasis.

Intervention: Dimethylfumarate 720mg daily for 16 weeks.

Methods: Biopsies were taken from the lesional skin of six psoriatic patients, at baseline and after 16 weeks of treatment with dimethylfumarate. Clinical severity scores were obtained (Psoriasis Area Severity Index [PASI] and psoriasis severity SUM scores). T-cell subsets (CD4+, CD8+, CD45RO+, CD45RA+, CD2+, CD25+), cells expressing NK receptors (CD94, CD161), an epidermal proliferation marker (Ki67), and a keratinization marker (K10) were immunohistochemically stained and, together with ‘epidermal thickness,’ quantified using image analysis.

Results: At week 16, the mean PASI and SUM scores were reduced by 55% (p < 0.01) and 49% (p < 0.01), respectively. In line with these results, epidermal hyperproliferation, keratinocyte differentiation, and epidermal thickness significantly improved. In the dermis and the epidermis, the relevant T-cell subsets significantly declined. However, in both the lesional psoriatic dermis and epidermis, cells expressing NK receptors (CD94 and CD161) persisted after 16 weeks of treatment.

Conclusions: Dimethylfumarate is an effective therapy for moderate-to-severe plaque psoriasis. The drug may act by reducing lesional T-cell subsets and normalizing epidermal hyperproliferation and keratinization, but does not reduce NKT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Singapore)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krueger JG. The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol 2002; 46: 1–23

    Article  PubMed  Google Scholar 

  2. Gudjonsson JE, Johnston A, Sigmundsdottir H, et al. Immunopathogenic mechanisms in psoriasis. Clin Exp Immunol 2004; 135: 1–8

    Article  PubMed  CAS  Google Scholar 

  3. Valdimarsson H, Baker BS, Jonsdottir I, et al. Psoriasis: a disease of abnormal proliferation induced by T lymphocytes. Immunol Today 1986; 7: 256–9

    Article  Google Scholar 

  4. Prinz JC, Gross B, Vollmer S, et al. T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro. Eur J Immunol 1994; 24: 593–8

    Article  PubMed  CAS  Google Scholar 

  5. Bovenschen HJ, van Vlijmen-Willems IM, van de Kerkhof PC, et al. Identification of lesional CD4+ CD25+ Foxp3+ regulatory T cells in psoriasis. Dermatology 2006; 213 (2): 111–7

    Article  PubMed  CAS  Google Scholar 

  6. Bovenschen HJ, Vissers WH, Seyger MM, et al. Selective persistence of dermal CD8+ T cells in lesional plaque psoriasis after clobetasol-17 propionate treatment. Acta Derm Venereol 2005; 85 (2): 113–7

    Article  PubMed  CAS  Google Scholar 

  7. Bovenschen HJ, Seyger MM, Van de Kerkhof PC. Plaque psoriasis vs. atopic dermatitis and lichen planus: a comparison for lesional T-cell subsets, epidermal proliferation and differentiation. Br J Dermatol 2005; 153 (1): 72–8

    Article  PubMed  CAS  Google Scholar 

  8. Sanders ME, Makgoba MW, Sharrow SO, et al. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and have three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-g production. J Immunol 1988; 140: 1401–7

    PubMed  CAS  Google Scholar 

  9. Wallace DL, Beverley PC. Phenotypic changes associated with activation of CD45RA+ and CD45RO+ T cells. Immunology 1990; 69: 460–7

    PubMed  CAS  Google Scholar 

  10. Nickoloff BJ, Wrone-Smith T, Bonish B, et al. Response of murine and normal human skin to injection of allogeneic blood-derived psoriatic immunocytes. Arch Dermatol 1999; 135: 546–52

    Article  PubMed  CAS  Google Scholar 

  11. Nickoloff BJ, Bonish B, Huang BB, et al. Characterization of a T cell line bearing natural killer receptors and capable of creating psoriasis in a SCID mouse model. J Dermatol Sci 2000; 24: 212–25

    Article  PubMed  CAS  Google Scholar 

  12. Cameron AL, Kirby B, Fei W, et al. Natural killer and natural killer-T cells in psoriasis. Arch Dermatol Res 2002; 294: 363–9

    PubMed  CAS  Google Scholar 

  13. Takahashi T, Dejbakhsh-Jones S, Strober S. Expression of CD161 (NKRP1A) defines subsets of human CD4 and CD8 T cells with different functional activities. J Immunol 2006 Jan 1; 176 (1): 211–6

  14. Lanier LL. NK cell receptors. Annu Rev Immunol 1998; 16: 359–93

    Article  PubMed  CAS  Google Scholar 

  15. Lopez-Botet M, Bellon T, Llano M, et al. Paired inhibitory and triggering NK cell receptors for HLA class I molecules. Hum Immunol 2000; 61: 7–17

    Article  PubMed  CAS  Google Scholar 

  16. Nickoloff BJ. Skin innate immune system in psoriasis: friend or foe? J Clin Invest 1999; 104: 1161–4

    Article  PubMed  CAS  Google Scholar 

  17. Vissers WH, Arndtz CH, Muys L, et al. Memory effector (CD45RO+) and cytotoxic (CD8+) T cells appear early in the margin zone of spreading psoriatic lesions in contrast to cells expressing natural killer receptors, which appear late. Br J Dermatol 2004; 150 (5): 852–9

    Article  PubMed  CAS  Google Scholar 

  18. Van Erp PE, de Mare S, Rijzewijk JJ, et al. A sequential double immunoenzymic staining procedure to obtain cell kinetic information in normal and hyperproliferative epidermis. Histochem J 1989; 21: 343–7

    Article  PubMed  Google Scholar 

  19. Mommers JM, van Rossum MM, van Erp PE, et al. Changes in keratin 6 and keratin 10 (co-)expression in lesional and symptomless skin of spreading psoriasis. Dermatology 2000; 201 (1): 15–20

    Article  PubMed  CAS  Google Scholar 

  20. Altmeyer P, Matthes U, Pawlak F, et al. Antipsoriatic effect of fumaric acid derivatives: results of a multicenter double-blind study in 100 patients. J Am Acad Dermatol 1994; 30: 977–81

    Article  PubMed  CAS  Google Scholar 

  21. Mrowietz U, Christophers E, Altmeyer P. Treatment of psoriasis with fumaric acid esters: results of a prospective multicentre study. German Multicentre Study. Br J Dermatol 1998; 138 (3): 456–60

    Article  PubMed  CAS  Google Scholar 

  22. Skaria AM, Schmid U. Antipsoriatic effect of fumaric acid derivatives. J Am Acad Dermatol 1996; 34 (2): 323–4

    Article  PubMed  CAS  Google Scholar 

  23. Nowack U, Gambichler T, Hanefeld C, et al. Successful treatment of recalcitrant cutaneous sarcoidosis with fumaric acid esters. BMC Dermatol 2002; 24 (2): 15

    Article  Google Scholar 

  24. Treumer F, Zhu K, Glaser R, et al. Dimethylfumarate is a potent inducer of apoptosis in human T cells. J Invest Dermatol 2003; 121 (6): 1383–8

    Article  PubMed  CAS  Google Scholar 

  25. Bacharach-Buhles M, Rochling A, el Gammal S, et al. The effect of fumaric acid esters and dithranol on acanthosis and hyperproliferation in psoriasis vulgaris. Acta Derm Venereol 1996; 76 (3): 190–3

    PubMed  CAS  Google Scholar 

  26. Sebok B, Szabados T, Kerenyi M, et al. Effect of fumaric acid, its dimethylester, and topical antipsoriatic drugs on epidermal differentiation in the mouse tail model. Skin Pharmacol 1996; 9 (2): 99–103

    Article  PubMed  CAS  Google Scholar 

  27. Zhu K, Mrowietz U. Inhibition of dendritic cell differentiation by fumaric acid esters. J Invest Dermatol 2001; 116 (2): 203–8

    Article  PubMed  CAS  Google Scholar 

  28. Ockenfels HM, Schultewolter T, Ockenfels G, et al. The antipsoriatic agent dimethylfumarate immunomodulates T-cell cytokine secretion and inhibits cytokines of the psoriatic cytokine network. Br J Dermatol 1998; 139 (3): 390–5

    Article  PubMed  CAS  Google Scholar 

  29. Loewe R, Holnthoner W, Groger M, et al. Dimethylfumarate inhibits TNF-induced nuclear entry of NF-kappa B/p65 in human endothelial cells. J Immunol 2002; 168 (9): 4781–7

    PubMed  CAS  Google Scholar 

  30. Hoxtermann S, Nuchel C, Altmeyer P. Fumaric acid esters suppress peripheral CD4- and CD8-positive lymphocytes in psoriasis. Dermatology 1998; 196 (2): 223–30

    Article  PubMed  CAS  Google Scholar 

  31. Bacharach-Buhles M, Pawlak F, Matthes U, et al. Fumaric acid esters (FAEs) suppress CD 15– and ODP 4–positive cells in psoriasis. Acta Derm Venereol 1994; 186: 79–82

    CAS  Google Scholar 

  32. Fredriksson T, Pettersson U. Severe psoriasis: oral therapy with a new retinoid. Dermatologica 1978; 157: 238–44

    Article  PubMed  CAS  Google Scholar 

  33. Nickoloff BJ. The immunologic and genetic basis of psoriasis. Arch Dermatol 1999; 135: 1104–10

    Article  PubMed  CAS  Google Scholar 

  34. Takeda KG, Dennert G. The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J Exp Med 1993; 177: 155–62

    Article  PubMed  CAS  Google Scholar 

  35. Wilson SB, Kent SC, Patton KT, et al. Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes. Nature 1998; 391: 177–84

    Article  PubMed  CAS  Google Scholar 

  36. Lehuen A, Lantz O, Beaudoin L, et al. Overexpression of natural killer T cells protects Vα14-Jα281 transgenic nonobese diabetic mice against diabetes. J Exp Med 1998; 188: 1831–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was part of a larger clinical trial by Fumapharm AG, which was funded. Prof. van de Kerkhof has acted as a consultant for Schering Plough, Cellgene, Centocor, Allmirall, UCB, Wyeth, Pfizer, Soffinova, Abbott, Actelion, Galderma, Novartis, Jansen Cilag, and Leo Pharma, and has carried out clinical trials for Centocor, Wyeth, Schering Plough, Merck Serono, Abbott, and Philips Lighting. The other authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jorn Bovenschen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bovenschen, H.J., Langewouters, A.M. & van de Kerkhof, P.C. Dimethylfumarate for Psoriasis. Am J Clin Dermatol 11, 343–350 (2010). https://doi.org/10.2165/11533240-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11533240-000000000-00000

Keywords

Navigation