Abstract
An obligate halophile fungal was isolated from 275 m deep marine sediments and is characterized here for the first time. Its optimal growth was at 15% NaCl even though it was able to grow at 25% and is incapable of growth with no NaCl. Based on its morphological characteristics as conidia chain production in a single phialide, the fungal is related to the genus Aspergillus, subgenus Polypaecilum. Phylogenetic molecular analysis using several markers (ITS1–2; RPB1; RPB2; Cct8; TSR1; CaM; BenA) places the fungal isolate closer to Aspergillus salinarus and A. baarnensis. However, its morphological and molecular differences establish it as a new species, Aspergillus loretoensis sp. nov.




Similar content being viewed by others
Change history
Abbreviations
- YPD:
-
Yeast, peptone, dextrose media
- BSA:
-
Bovine serum albumin
- GBAN:
-
Genbank accession number
- avg:
-
Average
References
Agrawal T, Kotasthane AS (2012) Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in central India. Springerplus 1:1–10. https://doi.org/10.1186/2193-1801-1-73
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. R Soc 265:1461–1465. https://doi.org/10.1007/BF00193160
Claus W (1989) Understanding microbes. W. H. Freeman and Company, New York
Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J et al (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10. https://doi.org/10.3114/sim.2007.59.01
González-Martínez S, Soria I, Ayala N, Portillo-López A (2017) Culturable halotolerant fungal isolates from Southern California Gulf sediments. Open Agric 2:292–299. https://doi.org/10.1515/opag-2017-0033
Grabherr M, Haas B, Yassour M, Levin JZ, Thompson DA et al (2013) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883
Greiner K, Peršoh D, Weig A, Rambold G (2014) Phialosimplex salinarum, a new species of Eurotiomycetes from a hypersaline habitat. IMA Fungus 5:161–172. https://doi.org/10.5598/imafungus.2014.05.02.01
Gunde-Cimerman N, Zalar P, De Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240. https://doi.org/10.1016/S0168-6496(00)00032-5
Houbraken J, De Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249. https://doi.org/10.1016/B978-0-12-800262-9.00004-4
Hsieh HM, Ju YM, Hsueh PR, Lin HY, Hu FR et al (2009) Fungal keratitis caused by a new filamentous hyphomycete Sagenomella keratitidis. Bot Stud 50:331–335. https://doi.org/10.1016/j.compscitech.2015.08.005
Johan-Olsen O (1887) Om sop på klipfisk den såkaldte mid. Christ Vidensk Forh 12:3–20
Kocsubé S, Perrone G, Magistà D et al (2016) Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles. Stud Mycol 85:199–213. https://doi.org/10.1016/j.simyco.2016.11.006
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Kunčič MK, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76:329–337. https://doi.org/10.1128/AEM.02318-09
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Madigan M, Martinko J, Bender K, Buckley DH, Stahl DA (2015) Brock biology of microorganisms, 14th edn. Pearson, New York
Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28. https://doi.org/10.1186/1471-2180-5-28
Martinelli L, Zalar P, Gunde-Cimerman N, Azua-Bustos A, Sterflinger K et al (2017) Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a Phialosimplex-like morphology. Extremophiles 21:755–773. https://doi.org/10.1007/s00792-017-0941-3
Michiels A, Van den Ende W, Tucker M, Van Riet L, Van Laere A (2003) Extraction of high-quality genomic DNA from latex-containing plants. Anal Biochem 315:85–89. https://doi.org/10.1016/S0003-2697(02)00665-6
National Center for Biotechnology Information (2019) NCBI. http://www.ncbi.nlm.nih.gov/. Accessed 1 May 2019
Nazareth S, Gonsalves V, Nayak S (2012) A first record of obligate halophilic aspergilli from the Dead Sea. Indian J Microbiol 52:22–27. https://doi.org/10.1007/s12088-011-0225-z
Pitt JI (1975) Xerophilic fungi and the spoilage of food of plant origin. In: Duckworth RB (ed) Water relations of foods. Academic press, New York, pp 273–307
Pitt JI, Hocking AD (1985) New species of fungi form Indonesian dried fish. Micotaxon 22:197–208
Pitt JI, Hocking AD (2009) Xerophiles. In: Fungi and food spoilage, 3rd edn. Springer, pp 339–355. https://doi.org/10.1007/978-0-387-92207-2
Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33
Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V et al (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173. https://doi.org/10.1016/j.simyco.2014.07.004
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:6241–6246. https://doi.org/10.1073/pnas.1117018109
Sigler L, Sutton DA, Gibas CFC, Summerbell RC, Noel RK et al (2010) Phialosimplex, a new anamorphic genus associated with infections in dogs and having phylogenetic affinity to the Trichocomaceae. Med Mycol 48:335–345. https://doi.org/10.3109/13693780903225805
Sklenář F, Jurjević Z, Zalar P, Frisvad JC, Visagie CM et al (2017) Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section restricti. Stud Mycol 88:161–236. https://doi.org/10.1016/j.simyco.2017.09.002
Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26:1134–1144. https://doi.org/10.1101/gr.196469.115
Tanney JB, Visagie CM, Yilmaz N, Seifert KA (2017) Aspergillus subgenus Polypaecilum from the built environment. Stud Mycol 88:237–267. https://doi.org/10.1016/j.simyco.2017.11.001
Trigiano R, Ament M (2004) Detecting and measuring extracellular enzymes of fungi and bacteria. In: Trigiano R, Windham M, Windham A (eds) Plant pathology. CRC, New York, pp 247–259
Washington University (2018) SQL share: uniprot-reviewed-annotations_041017
Wheeler KA, Hocking AD, Pitt JI, Anggawati AM (1986) Fungi associated with Indonesian dried fish. Food Microbiol 3:351–357. https://doi.org/10.1016/0740-0020(86)90020-1
Wheeler KA, Hocking AD, Pitt JI (1988) Influence of temperature on the water relations of Polypaecilum pisce and Basipetospora halophila, two halophilic fungi. J Gen Microbiol 134:2255–2260. https://doi.org/10.1099/00221287-134-8-2255
Wingett SW, Andrews S (2018) FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7:1338. https://doi.org/10.12688/f1000research.15931.2
Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimermana N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256. https://doi.org/10.1128/AEM.02702-13
Zalar P, Sybren de Hoog G, Schroers HJ, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87:311–328. https://doi.org/10.1007/s10482-004-6783-x
Zhou N, Zhang Y, Liu F, Cai L (2016) Halophilic and thermotolerant Gymnoascus species from several special environments, China. Mycologia 108:179–191. https://doi.org/10.3852/15-086
Acknowledgements
We thank Consejo Nacional de Ciencia y Tecnología for their support with the Ph.D. scholarship. We are grateful to Universidad Autónoma de Baja California and Centro de Investigaciones Científicas y de Educación Superior de Ensenada to allow us to use their facilities.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Oren.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
González-Martínez, S., Galindo-Sánchez, C., López-Landavery, E. et al. Aspergillus loretoensis, a single isolate from marine sediment of Loreto Bay, Baja California Sur, México resulting as a new obligate halophile species. Extremophiles 23, 557–568 (2019). https://doi.org/10.1007/s00792-019-01107-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00792-019-01107-6