Skip to main content

Simulation of the Dynamic Behavior of Bedding-Foundation-Soil in the Time Domain

  • Conference paper
System Dynamics and Long-Term Behaviour of Railway Vehicles, Track and Subgrade

Part of the book series: Lecture Notes in Applied Mechanics ((LNACM,volume 6))

Abstract

The simulation of the interaction between a railway bed and a train calls for the development of a reliable computational model. Whereas models for the train, developed with conventional methods, exist and are applied successfully in industry, there is no suitable model to describe, in detail, the dynamic behavior of the bedding, the foundation, and the undisturbed soil.

A simple possibility to take into account these subsystems is to assume an elastic embedment (Winkler model). This model, however, does not fully represent the elasticity and damping, especially in the case of wave radiation. Therefore, the computational results obtained with this approach do not correspond well to measurements.

The present project deals with a combination of the boundary element method (BEM) and the finite element method (FEM) for the numerical analyses of bedding-foundation-soil interaction problems. Different material laws, e.g., an elastoplastic and a damage model, are implemented in order to investigate the influence of different nonlinear models on the dynamic interaction. The accuracy and applicability of the model is shown by several examples, namely a benchmark problem, a tunnel system, and a number of railway track configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Singapore)
eBook
EUR 245.03
Price includes VAT (Singapore)
Softcover Book
EUR 299.99
Price excludes VAT (Singapore)
Hardcover Book
EUR 299.99
Price excludes VAT (Singapore)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adam M., Pflanz G., Schmid G. (2000) Two- and Three-Dimensional Transient Responses of Half-Space under Dynamic Strip Loads and Train Track Loads. Proc. of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand

    Google Scholar 

  2. Bathe K.J. (1996) Finite element procedures. Prentice Hall. Upper Saddle River

    Google Scholar 

  3. Becker A.A. (1992) The boundary element method in engineering. McGraw-Hill, Berkshire

    Google Scholar 

  4. Beskos DE. (1997) Boundary element methods in dynamic analysis. Part II (1986–1996). Appl. Mech. Rev. 50, 149–197

    Article  Google Scholar 

  5. Chen WF. (1994) Constitutive Equations for Engineering Materials, Volumen 2: Plasticity and Modeling. Elsevier, Amsterdam

    Google Scholar 

  6. von Estorff O., Firuziaan M. (1999) Nonlinear Dynamic Response by Coupling BEM and FEM. Proc. of the European Conference on Computational Mechanics (ECCM 99) Munich

    Google Scholar 

  7. von Estorff O., Firuziaan M. (2000) Coupled BEM/FEM Approach for Nonlinear Soil/Structure Interaction. Engineering Analysis with Boundary Elements, Elsevier Science

    Google Scholar 

  8. von Estorff O., Firuziaan M. (2000) Transient Nonlinear Behaviour of Railway Beds by FEM/BEM Coupling. EUROMECH Colloquium 409, “Dynamics and Long-Term Behaviour of Railway Vehicles, Track and Subgrade”, Hannover.

    Google Scholar 

  9. von Estorff O., Firuziaan M. (2000) FEM and BEM for Nonlinear Soil/Structure Interaction Analyses. International Workshop WAVE 2000, Bochum

    Google Scholar 

  10. von Estorff O., Prabucki MJ. (1990) Dynamic response in the time domain by coupled boundary and finite elements. Computational Mechanics. 6, 35–46

    Article  MATH  Google Scholar 

  11. Firuziaan M., von Estorff O. (2002) Transient 3D Soil/Structure Interaction Analyses Including Nonlinear Effects. eurodyn 2002 (submitted)

    Google Scholar 

  12. Fukui T. (1987) Time marching BE-FE method in 2-D elastodynamic problems. Int. Conf. on BEM IX, Stuttgart

    Google Scholar 

  13. Gaul L., Schanz M. (1998) Material Damping Formulations in Boundary Element Methods. Proc. of the 16th Int. Modal Analysis Conf., Santa Barbara

    Google Scholar 

  14. Gaul L. (1999) Influence of Damping on Waves and Vibrations. Mechanical Systems & Signal Processing 13, 1–30

    Article  Google Scholar 

  15. Gudehus G., Kolymbas D. (1979) A constitutive law of the rate type for soil. 3rd Int. Conf. Num. Meth. Geomech. (Ed. W. Wittke), Aachen, Balkema, 319–329

    Google Scholar 

  16. Kausel E., Roësset J.M. (1975) Dynamic stiffness of circular foundations, Journal of Engineering Mechanics Division, ASCE 101, 771–785

    Google Scholar 

  17. Kausel E. (1988) Local transmitting boundary, Journal of Engineering Mechanics, ASCE , 1011–1027

    Google Scholar 

  18. Kausel E. (1994) Thin-Layer-Method: Formulation in the Time Domain, Int. J. for Num. Methods in Eng., Vol. 37, 927–941.

    Article  MATH  Google Scholar 

  19. Kayupov M.A., Bulgakov V.E., Kuhn G. (1998) Efficient Solution of 3-D Geomechanical Problems by Indirect BEM Using Iterative Methods. Int. J. for Numerical and Analytical Methods in Geomechanics 22, 983–100

    Article  MATH  Google Scholar 

  20. Knothe K., Wu Y. (1998) Receptance Behavior of Railway Track and Subgrade. Archive of Applied Mechanics 68, 457–470

    Article  MATH  Google Scholar 

  21. Lefeuve-Mesgouez G. (1999) Ground Vibration due to a high speed moving harmonic load. Proc. of the 4th European Conference on Structural Dynamics, EURODYN’99, Prag

    Google Scholar 

  22. Lima L.T., (1999) A Two-dimensional Conjugated Infinite Element Method for Elastodynamics: Formulation and Validation in the Frequency Domain. Ph.D. Thesis, UCL Universit catholique de Louvain, Louvain-la-Neuve

    Google Scholar 

  23. Luo Y., Yin H., Hua C.(1996) Dynamic Response of Railway Ballast to the Action of Trains Moving at Different Speeds. Proc. of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 210, 95–101

    Article  Google Scholar 

  24. Lysmer J. (1970) Lumped mass method for rayleigh waves. Bulletin of the Seismological Society of America. 60, 89–104

    Google Scholar 

  25. Lysmer J., Kuhlemeyer R.L. (1969) Finite dynamic model for infinite media. Journal of Engineering Mechanics Division, ASCE 95, 859–877

    Google Scholar 

  26. Mansur W.J. (1983) A time-stepping technique to solve wave propagation problems using boundary element method. Ph.D. Thesis. University Southampton

    Google Scholar 

  27. Peplon A.T., Jones C.J.C., Petyt M. (1999) Surface Vibration Propagation over a Layered Elastic Halfspace with Inclusions. Applied Acoustics 56, 283–296

    Article  Google Scholar 

  28. Pflanz G. (2001) Numerische Untersuchung der elastischen Wellenausbreitung infolge bewegter Lasten mittels der Randelementmethode im Zeitbereich. Fortschritt-Berichte VDI Reihe 18, Nr. 265, VDI-Verlag, Düsseldorf

    Google Scholar 

  29. Pflanz G., Hubert W., Schmid G. (1999) Erschütterungsausbreitung durch Schienenverkehr. Tagungsband des 11. Forums Bauinformatik, TU Darmstadt

    Google Scholar 

  30. Rauber T., Rüger G. (2000) Parallele und verteilte Programmierung. Springer Verlag, Berlin

    Book  MATH  Google Scholar 

  31. Ripke B.(1995) Hochfrequente Gleismodellierung und Simulation der FahrzeugGleis-Dynamik unter Verwendung einer nichtlinearen Kontaktmechanik. Fortschritt-Berichte VDI Reihe 12, Nr. 249, VDI-Verlag, Düsseldorf

    Google Scholar 

  32. Ripke R. (1999) Dynamik und Langzeitverhalten des Schotters — Anforderungen an die Simulationsmodelle. In: Schotteroberbau — Mechanische Modellierung, Laborversuche und die Praxis. Symposium des Interdisziplinren Forschungsverbundes Bahntechnik, Berlin

    Google Scholar 

  33. Savidis S.A., Bode C., Hirschauer R. (2000) Three-Dimensional Structure-SoilStructure Interaction Under Seismic Excitation with Partial Uplift. Proc. of the 12th World Conference on Earthquake Engineering 12WCEE, New Zealand

    Google Scholar 

  34. Savidis S.A., Hirschauer R. (1998) Dynamic soil-structure interaction of adjacent structures. Proc. of the Int. Conf. on Soil-Structure Interaction in Urban Civil Engineering, Darmstadt

    Google Scholar 

  35. Simo J.C. (1987) On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects. Computer Methods in Applied Mechanics and Engineering 60, 153–173

    Article  MathSciNet  MATH  Google Scholar 

  36. Turek J. (1995) Non-linear Response of the Track. Vehicle System Dynamics 24, 265–279

    Article  Google Scholar 

  37. Waas G. (1972) Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media. Ph.D. Thesis. University of California

    Google Scholar 

  38. Wolf J.P., Song C.h. (1999) The Guts of Dynamic Soil-Structure Interaction. Proc. of the Int. Symp. On Earthquake Engineering ISEE99, Budva, Montenegro

    Google Scholar 

  39. Wolf J.P. (1994) Foundation Vibration Analysis Using Simple Physical Models. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  40. Wolf J.P., Song C.h. (1997) Finite-Element Modelling of Unbounded Media. John Wiley and Sons, Chichester

    Google Scholar 

  41. Xiaoye S.L., Demmel J.W. (1998) Making Sparse Gaussian Elemination Scaleable by Static Pivoting. Proceeding of SC 98 Conference, Orlando, Florida

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Firuziaan, M., von Estorff, O. (2003). Simulation of the Dynamic Behavior of Bedding-Foundation-Soil in the Time Domain. In: Popp, K., Schiehlen, W. (eds) System Dynamics and Long-Term Behaviour of Railway Vehicles, Track and Subgrade. Lecture Notes in Applied Mechanics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45476-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45476-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07864-4

  • Online ISBN: 978-3-540-45476-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics