Abstract
The simulation of the interaction between a railway bed and a train calls for the development of a reliable computational model. Whereas models for the train, developed with conventional methods, exist and are applied successfully in industry, there is no suitable model to describe, in detail, the dynamic behavior of the bedding, the foundation, and the undisturbed soil.
A simple possibility to take into account these subsystems is to assume an elastic embedment (Winkler model). This model, however, does not fully represent the elasticity and damping, especially in the case of wave radiation. Therefore, the computational results obtained with this approach do not correspond well to measurements.
The present project deals with a combination of the boundary element method (BEM) and the finite element method (FEM) for the numerical analyses of bedding-foundation-soil interaction problems. Different material laws, e.g., an elastoplastic and a damage model, are implemented in order to investigate the influence of different nonlinear models on the dynamic interaction. The accuracy and applicability of the model is shown by several examples, namely a benchmark problem, a tunnel system, and a number of railway track configurations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adam M., Pflanz G., Schmid G. (2000) Two- and Three-Dimensional Transient Responses of Half-Space under Dynamic Strip Loads and Train Track Loads. Proc. of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand
Bathe K.J. (1996) Finite element procedures. Prentice Hall. Upper Saddle River
Becker A.A. (1992) The boundary element method in engineering. McGraw-Hill, Berkshire
Beskos DE. (1997) Boundary element methods in dynamic analysis. Part II (1986–1996). Appl. Mech. Rev. 50, 149–197
Chen WF. (1994) Constitutive Equations for Engineering Materials, Volumen 2: Plasticity and Modeling. Elsevier, Amsterdam
von Estorff O., Firuziaan M. (1999) Nonlinear Dynamic Response by Coupling BEM and FEM. Proc. of the European Conference on Computational Mechanics (ECCM 99) Munich
von Estorff O., Firuziaan M. (2000) Coupled BEM/FEM Approach for Nonlinear Soil/Structure Interaction. Engineering Analysis with Boundary Elements, Elsevier Science
von Estorff O., Firuziaan M. (2000) Transient Nonlinear Behaviour of Railway Beds by FEM/BEM Coupling. EUROMECH Colloquium 409, “Dynamics and Long-Term Behaviour of Railway Vehicles, Track and Subgrade”, Hannover.
von Estorff O., Firuziaan M. (2000) FEM and BEM for Nonlinear Soil/Structure Interaction Analyses. International Workshop WAVE 2000, Bochum
von Estorff O., Prabucki MJ. (1990) Dynamic response in the time domain by coupled boundary and finite elements. Computational Mechanics. 6, 35–46
Firuziaan M., von Estorff O. (2002) Transient 3D Soil/Structure Interaction Analyses Including Nonlinear Effects. eurodyn 2002 (submitted)
Fukui T. (1987) Time marching BE-FE method in 2-D elastodynamic problems. Int. Conf. on BEM IX, Stuttgart
Gaul L., Schanz M. (1998) Material Damping Formulations in Boundary Element Methods. Proc. of the 16th Int. Modal Analysis Conf., Santa Barbara
Gaul L. (1999) Influence of Damping on Waves and Vibrations. Mechanical Systems & Signal Processing 13, 1–30
Gudehus G., Kolymbas D. (1979) A constitutive law of the rate type for soil. 3rd Int. Conf. Num. Meth. Geomech. (Ed. W. Wittke), Aachen, Balkema, 319–329
Kausel E., Roësset J.M. (1975) Dynamic stiffness of circular foundations, Journal of Engineering Mechanics Division, ASCE 101, 771–785
Kausel E. (1988) Local transmitting boundary, Journal of Engineering Mechanics, ASCE , 1011–1027
Kausel E. (1994) Thin-Layer-Method: Formulation in the Time Domain, Int. J. for Num. Methods in Eng., Vol. 37, 927–941.
Kayupov M.A., Bulgakov V.E., Kuhn G. (1998) Efficient Solution of 3-D Geomechanical Problems by Indirect BEM Using Iterative Methods. Int. J. for Numerical and Analytical Methods in Geomechanics 22, 983–100
Knothe K., Wu Y. (1998) Receptance Behavior of Railway Track and Subgrade. Archive of Applied Mechanics 68, 457–470
Lefeuve-Mesgouez G. (1999) Ground Vibration due to a high speed moving harmonic load. Proc. of the 4th European Conference on Structural Dynamics, EURODYN’99, Prag
Lima L.T., (1999) A Two-dimensional Conjugated Infinite Element Method for Elastodynamics: Formulation and Validation in the Frequency Domain. Ph.D. Thesis, UCL Universit catholique de Louvain, Louvain-la-Neuve
Luo Y., Yin H., Hua C.(1996) Dynamic Response of Railway Ballast to the Action of Trains Moving at Different Speeds. Proc. of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 210, 95–101
Lysmer J. (1970) Lumped mass method for rayleigh waves. Bulletin of the Seismological Society of America. 60, 89–104
Lysmer J., Kuhlemeyer R.L. (1969) Finite dynamic model for infinite media. Journal of Engineering Mechanics Division, ASCE 95, 859–877
Mansur W.J. (1983) A time-stepping technique to solve wave propagation problems using boundary element method. Ph.D. Thesis. University Southampton
Peplon A.T., Jones C.J.C., Petyt M. (1999) Surface Vibration Propagation over a Layered Elastic Halfspace with Inclusions. Applied Acoustics 56, 283–296
Pflanz G. (2001) Numerische Untersuchung der elastischen Wellenausbreitung infolge bewegter Lasten mittels der Randelementmethode im Zeitbereich. Fortschritt-Berichte VDI Reihe 18, Nr. 265, VDI-Verlag, Düsseldorf
Pflanz G., Hubert W., Schmid G. (1999) Erschütterungsausbreitung durch Schienenverkehr. Tagungsband des 11. Forums Bauinformatik, TU Darmstadt
Rauber T., Rüger G. (2000) Parallele und verteilte Programmierung. Springer Verlag, Berlin
Ripke B.(1995) Hochfrequente Gleismodellierung und Simulation der FahrzeugGleis-Dynamik unter Verwendung einer nichtlinearen Kontaktmechanik. Fortschritt-Berichte VDI Reihe 12, Nr. 249, VDI-Verlag, Düsseldorf
Ripke R. (1999) Dynamik und Langzeitverhalten des Schotters — Anforderungen an die Simulationsmodelle. In: Schotteroberbau — Mechanische Modellierung, Laborversuche und die Praxis. Symposium des Interdisziplinren Forschungsverbundes Bahntechnik, Berlin
Savidis S.A., Bode C., Hirschauer R. (2000) Three-Dimensional Structure-SoilStructure Interaction Under Seismic Excitation with Partial Uplift. Proc. of the 12th World Conference on Earthquake Engineering 12WCEE, New Zealand
Savidis S.A., Hirschauer R. (1998) Dynamic soil-structure interaction of adjacent structures. Proc. of the Int. Conf. on Soil-Structure Interaction in Urban Civil Engineering, Darmstadt
Simo J.C. (1987) On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects. Computer Methods in Applied Mechanics and Engineering 60, 153–173
Turek J. (1995) Non-linear Response of the Track. Vehicle System Dynamics 24, 265–279
Waas G. (1972) Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media. Ph.D. Thesis. University of California
Wolf J.P., Song C.h. (1999) The Guts of Dynamic Soil-Structure Interaction. Proc. of the Int. Symp. On Earthquake Engineering ISEE99, Budva, Montenegro
Wolf J.P. (1994) Foundation Vibration Analysis Using Simple Physical Models. Prentice-Hall, Englewood Cliffs
Wolf J.P., Song C.h. (1997) Finite-Element Modelling of Unbounded Media. John Wiley and Sons, Chichester
Xiaoye S.L., Demmel J.W. (1998) Making Sparse Gaussian Elemination Scaleable by Static Pivoting. Proceeding of SC 98 Conference, Orlando, Florida
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Firuziaan, M., von Estorff, O. (2003). Simulation of the Dynamic Behavior of Bedding-Foundation-Soil in the Time Domain. In: Popp, K., Schiehlen, W. (eds) System Dynamics and Long-Term Behaviour of Railway Vehicles, Track and Subgrade. Lecture Notes in Applied Mechanics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45476-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-45476-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-07864-4
Online ISBN: 978-3-540-45476-2
eBook Packages: Springer Book Archive