Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Vorlesung 14
- Gleichmäßige Stetigkeit
Die Funktion
ist stetig. In jedem Punkt gibt es zu jedem ein mit . Dabei hängt das nicht nur von der Zielgenauigkeit , sondern auch von ab. Je kleiner wird, desto steiler wird der Funktionsgraph und desto kleiner muss gewählt werden, damit das Bild der -Umgebung innerhalb der -Umgebung von landet. Es gibt natürlich auch Funktionen, bei denen man zu jedem ein findet, dass für alle die Stetigkeitseigenschaft sichert.
Es sei eine Teilmenge,
eine Funktion. Dann heißt gleichmäßig stetig, wenn es zu jedem ein mit folgender Eigenschaft gibt: Für alle mit ist .
Der Unterschied zwischen stetig und gleichmäßig stetig liegt also allein in der Reihenfolge der Quantoren. Das , das es in beiden Konzepten zu einem vorgegebenen geben muss, hängt bei stetig nicht nur von , sondern auch vom Punkt ab, bei gleichmäßig stetig dagegen nur von .
Wir nehmen an, dass nicht gleichmäßig stetig ist. Dann gibt es ein mit der Eigenschaft, dass es für alle ein Punktepaar mit und gibt.[1] Insbesondere gibt es somit für jedes eine Punktepaar mit und . Nach dem Satz von Bolzano-Weierstraß besitzt die Folge eine in konvergente Teilfolge, deren Grenzwert, nennen wir ihn , wegen der Abgeschlossenheit zum Intervall gehören muss. Die Glieder der Teilfolge besitzen die eingangs beschriebenen Eigenschaften, deshalb können wir direkt annehmen, dass die Folge gegen konvergiert. Die Folge konvergiert nach Aufgabe ***** ebenfalls gegen . Wegen der Stetigkeit konvergieren dann nach dem Folgenkriterium auch die beiden Bildfolgen und gegen . Es sei nun . Dann ist für hinreichend groß sowohl als auch . Dies ergibt mit der Dreiecksungleichung einen Widerspruch zu .
- Fortsetzung von stetigen Funktionen
Es sei eine Teilmenge,
eine stetige Funktion und es sei . Dann heißt eine Abbildung
eine stetige Fortsetzung von , wenn stetig ist und für alle gilt.
Eine stetige Funktion besitzt im Allgemeinen keine stetige Fortsetzung auf einen größeren Definitionsbereich. Beispielsweise kann die auf definierte Funktion nicht stetig auf ganz ausgedehnt werden. Ferner muss eine stetige Fortsetzung (oder Ausdehnung), wenn sie denn existiert, nicht eindeutig sein. Für beide Fragestellungen ist die Existenz von Funktionslimiten in Berührpunkten der Definitionsmenge entscheidend.
Es sei . Ein Punkt heißt Berührpunkt von , wenn es (mindestens) eine Folge gibt, die gegen konvergiert.
Es sei eine Teilmenge,
eine stetige Funktion und es sei , wobei aus Berührpunkten von bestehe. Für jedes existiere der Grenzwert .
Dann ist die durch
definierte Abbildung eine stetige Fortsetzung von auf .
Es sei und vorgegeben. Da ein Berührpunkt von ist und da der Grenzwert von in existiert (bei existiert er aufgrund der Stetigkeit), gibt es ein mit für alle . Wir behaupten, dass die Stetigkeitsbedingung mit der Aufwandsgenauigkeit erfüllt ist. Es sei also ein mit gegeben. Es gibt ein mit und mit . Wegen der ersten Abschätzung und der Voraussetzung an ist . Insgesamt ist daher
Es sei eine Teilmenge und die Menge aller Berührpunkte von . Es sei
eine gleichm��ßig stetige Funktion.
Dann gibt es eine eindeutig bestimmte stetige Fortsetzung
Aufgrund von Satz 14.5 genügt es zu zeigen, dass der Grenzwert für jedes existiert. Es sei eine Folge in , die gegen konvergiert. Wir zeigen, dass dann auch die Bildfolge konvergiert. Da diese Bildfolge in ist, und vollständig ist, genügt es zu zeigen, dass eine Cauchy-Folge vorliegt. Sei vorgegeben. Wegen der gleichmäßigen Stetigkeit von gibt es ein derart, dass für alle mit ist. Wegen der Konvergenz der Folge handelt es sich nach Satz 6.7 um eine Cauchy-Folge und daher gibt es ein mit für alle . Somit gilt
für alle
.
Wir müssen nun noch zeigen, dass für jede gegen konvergente Folge der Grenzwert der Bildfolge gleich ist. Dies ergibt sich aber sofort, wenn man für zwei Folgen
und
die Folge betrachtet, die ebenfalls gegen konvergiert, und für die der Limes der Bildfolge mit den Limiten der Teilbildfolgen übereinstimmt.
Dies folgt direkt aus Satz 14.6 und aus .
- Reelle Exponentialfunktionen
Für jede positive reelle Zahl und ist eine positive reelle Zahl, wobei die Potenzgesetze gelten, siehe Aufgabe *****. Für eine weitere natürliche Zahl und eine positive reelle Zahl ist definiert. Für eine rationale Zahl ist daher definiert, und zwar ist dies unabhängig von der Wahl der Zähler und Nenner in der Darstellung von , siehe Aufgabe 14.9.
Es sei eine positive reelle Zahl. Dann besitzt die Funktion
folgende Eigenschaften.
- Es ist für alle .
- Es ist .
- Für und ist .
- Für und ist .
- Für ist streng wachsend.
- Für ist streng fallend.
- Es ist für alle .
- Für ist .
Beweis
Es sei eine positive reelle Zahl.
Dann ist die Funktion
auf jedem beschränkten Intervall gleichmäßig stetig.
Wir betrachten Intervalle der Form mit . Aufgrund der Monotonie ist
für alle . Sei vorgegeben. Die Folge konvergiert nach Aufgabe ***** gegen , daher gibt es insbesondere ein derart, dass
ist. Wir setzen . Dann gelten für zwei beliebige rationale Zahlen mit
unter Verwendung der Funktionalgleichung die Abschätzungen (wir beschränken uns auf den Fall und )
Aufgrund von
Lemma 14.9
und
Korollar 14.7
(mit einem beliebigen Intervall statt ganz .)
lassen sich die zunächst nur auf definierten Exponentialfunktionen zu stetigen Funktionen auf den reellen Zahlen fortsetzen. In diesem Sinn ist die folgende Definition zu verstehen.
Es sei eine positive reelle Zahl. Dann besitzt die Exponentialfunktion
folgende Eigenschaften.
- Es ist für alle .
- Es ist .
- Für und ist .
- Für und ist .
- Für ist streng wachsend.
- Für ist streng fallend.
- Es ist für alle .
- Für ist .
Wir beweisen (1), die anderen Eigenschaften ergeben sich ähnlich, siehe Aufgabe *****. Es sei eine rationale Folge, die gegen konvergiert, und eine rationale Folge, die gegen konvergiert. Dann ist nach Lemma 6.1 (1) die Folge eine rationale Folge, die gegen konvergiert. Somit ist unter Verwendung der rationalen Funktionalgleichung und von Lemma 6.1 (2) und der Stetigkeit
Eine besondere Rolle spielt die Exponentialfunktion zur Basis . Wir werden dafür bald eine weitere Beschreibung kennenlernen, die auch für komplexe Exponenten erklärt ist.
- Fußnoten
- ↑ Von der Negation der gleichmäßigen Konvergenz her steht hier eigentlich , doch reicht für den anvisierten Widerspruch
<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil I | >> |
---|