(210) Isabella

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Die Druckversion wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisiere deine Browser-Lesezeichen und verwende stattdessen die Standard-Druckfunktion des Browsers.
Asteroid
(210) Isabella
Berechnetes 3D-Modell von (210) Isabella
Berechnetes 3D-Modell von (210) Isabella
{{{Bild2}}}
{{{Bildtext2}}}
Eigenschaften des Orbits Animation
Epoche: 17. Oktober 2024 (JD 2.460.600,5)
Orbittyp Mittlerer Hauptgürtel
Asteroidenfamilie
Große Halbachse 2,721 AE
Exzentrizität 0,124
Perihel – Aphel 2,385 AE – 3,057 AE
Perihel – Aphel  AE –  AE
Neigung der Bahnebene 5,3°
Länge des aufsteigenden Knotens 32,5°
Argument der Periapsis 13,8°
Zeitpunkt des Periheldurchgangs 19. August 2023
Siderische Umlaufperiode 4 a 178 d
Siderische Umlaufzeit {{{Umlaufdauer}}}
Mittlere Orbital­geschwin­digkeit km/s
Mittlere Orbital­geschwin­digkeit 17,99 km/s
Physikalische Eigenschaften
Mittlerer Durchmesser 86,7 ± 2,3 km
Abmessungen {{{Abmessungen}}}
Masse Vorlage:Infobox Asteroid/Wartung/Masse kg
Albedo 0,04
Mittlere Dichte g/cm³
Rotationsperiode 6 h 40 min
Absolute Helligkeit 9,4 mag
Spektralklasse {{{Spektralklasse}}}
Spektralklasse
(nach Tholen)
CF
Spektralklasse
(nach SMASSII)
Cb
Geschichte
Entdecker Johann Palisa
Datum der Entdeckung 12. November 1879
Andere Bezeichnung 1879 VA, 1953 EZ1, 1962 BF
Quelle: Wenn nicht einzeln anders angegeben, stammen die Daten vom JPL Small-Body Database. Die Zugehörigkeit zu einer Asteroidenfamilie wird automatisch aus der AstDyS-2 Datenbank ermittelt. Bitte auch den Hinweis zu Asteroidenartikeln beachten.

(210) Isabella ist ein Asteroid des mittleren Hauptgürtels, der am 12. November 1879 vom österreichischen Astronomen Johann Palisa an der Marine-Sternwarte Pola entdeckt wurde.

Es ist kein Bezug der Benennung zu einer Person oder einem Ereignis bekannt.

Aufgrund der Spektralklasse und der Bahneigenschaften wird (210) Isabella zur Nemesis-Familie gezählt.

Aus Ergebnissen der IRAS Minor Planet Survey (IMPS) wurden 1992 erstmals Angaben zu Durchmesser und Albedo für zahlreiche Asteroiden abgeleitet, darunter auch (210) Isabella, für die damals Werte von 86,7 km bzw. 0,04 erhalten wurden.[1] Eine Auswertung von Beobachtungen durch das Projekt NEOWISE im nahen Infrarot führte 2012 zu vorläufigen Werten für den Durchmesser und die Albedo im sichtbaren Bereich von 102,0 km bzw. 0,03.[2] Nach der Reaktivierung von NEOWISE im Jahr 2013 und Registrierung neuer Daten wurden die Werte 2016 korrigiert zu 97,2 km bzw. 0,03.[3]

Eine Auswertung archivierter Lichtkurven ermöglichte einer Forschergruppe in einer Untersuchung von 2016 die genaue Bestimmung der Rotationsperiode zu 6,6719 h, außerdem konnten zwei alternative Lösungen für die räumliche Lage der Rotationsachse bestimmt werden in Verbindung mit einer retrograden Rotation des Asteroiden.[4]

Abschätzungen von Masse und Dichte für den Asteroiden (210) Isabella aufgrund von gravitativen Beeinflussungen auf Testkörper hatten in einer Untersuchung von 2012 zu einer Masse von etwa 3,41·1018 kg geführt und mit einem angenommenen Durchmesser von etwa 74 km zu einer als unrealistisch bewerteten Dichte von 16,3 g/cm³ bei keiner Porosität.[5]

Siehe auch

Einzelnachweise

  1. E. F. Tedesco, P. V. Noah, M. Noah, S. D. Price: The Supplemental IRAS Minor Planet Survey. In: The Astronomical Journal. Band 123, Nr. 2, 2002, S. 1056–1085, doi:10.1086/338320 (PDF; 398 kB).
  2. J. R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, C. Nugent, M. S. Cabrera: Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids. In: The Astrophysical Journal Letters. Band 759, Nr. 1, L8, 2012, S. 1–8, doi:10.1088/2041-8205/759/1/L8 (PDF; 3,27 MB).
  3. C. R. Nugent, A. Mainzer, J. Bauer, R. M. Cutri, E. A. Kramer, T. Grav, J. Masiero, S. Sonnett, E. L. Wright: NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos. In: The Astronomical Journal. Band 152, Nr. 3, 2016, S. 1–12, doi:10.3847/0004-6256/152/3/63 (PDF; 1,34 MB).
  4. J. Hanuš, J. Ďurech, D. A. Oszkiewicz, R. Behrend, B. Carry, M. Delbo, O. Adam, V. Afonina, R. Anquetin, P. Antonini, L. Arnold, M. Audejean, P. Aurard, M. Bachschmidt, B. Baduel, E. Barbotin, P. Barroy, P. Baudouin, L. Berard, N. Berger, L. Bernasconi, J-G. Bosch, S. Bouley, I. Bozhinova, J. Brinsfield, L. Brunetto, G. Canaud, J. Caron, F. Carrier, G. Casalnuovo, S. Casulli, M. Cerda, L. Chalamet, S. Charbonnel, B. Chinaglia, A. Cikota, F. Colas, J.-F. Coliac, A. Collet, J. Coloma, M. Conjat, E. Conseil, R. Costa, R. Crippa, M. Cristofanelli, Y. Damerdji, A. Debackère, A. Decock, Q. Déhais, T. Déléage, S. Delmelle, C. Demeautis, M. Dróżdż, G. Dubos, T. Dulcamara, M. Dumont, R. Durkee, R. Dymock, A. Escalante del Valle, N. Esseiva, R. Esseiva, M. Esteban, T. Fauchez, M. Fauerbach, M. Fauvaud, S. Fauvaud, E. Forné, C. Fournel, D. Fradet, J. Garlitz, O. Gerteis, C. Gillier, M. Gillon, R. Giraud, J.-P. Godard, R. Goncalves, Hiroko Hamanowa, Hiromi Hamanowa, K. Hay, S. Hellmich, S. Heterier, D. Higgins, R. Hirsch, G. Hodosan, M. Hren, A. Hygate, N. Innocent, H. Jacquinot, S. Jawahar, E. Jehin, L. Jerosimic, A. Klotz, W. Koff, P. Korlevic, E. Kosturkiewicz, P. Krafft, Y. Krugly, F. Kugel, O. Labrevoir, J. Lecacheux, M. Lehký, A. Leroy, B. Lesquerbault, M. J. Lopez-Gonzales, M. Lutz, B. Mallecot, J. Manfroid, F. Manzini, A. Marciniak, A. Martin, B. Modave, R. Montaigut, J. Montier, E. Morelle, B. Morton, S. Mottola, R. Naves, J. Nomen, J. Oey, W. Ogłoza, M. Paiella, H. Pallares, A. Peyrot, F. Pilcher, J.-F. Pirenne, P. Piron, M. Polińska, M. Polotto, R. Poncy, J. P. Previt, F. Reignier, D. Renauld, D. Ricci, F. Richard, C. Rinner, V. Risoldi, D. Robilliard, D. Romeuf, G. Rousseau, R. Roy, J. Ruthroff, P. A. Salom, L. Salvador, S. Sanchez, T. Santana-Ros, A. Scholz, G. Séné, B. Skiff, K. Sobkowiak, P. Sogorb, F. Soldán, A. Spiridakis, E. Splanska, S. Sposetti, D. Starkey, R. Stephens, A. Stiepen, R. Stoss, J. Strajnic, J.-P. Teng, G. Tumolo, A. Vagnozzi, B. Vanoutryve, J. M. Vugnon, B. D. Warner, M. Waucomont, O. Wertz, M. Winiarski, M. Wolf: New and updated convex shape models of asteroids based on optical data from a large collaboration network. In: Astronomy & Astrophysics. Band 586, A108, 2016, S. 1–24, doi:10.1051/0004-6361/201527441 (PDF; 493 kB).
  5. B. Carry: Density of Asteroids. In: Planetary and Space Science. Band 73, Nr. 1, 2012, S. 98–118, doi:10.1016/j.pss.2012.03.009 (arXiv-Preprint: PDF; 5,41 MB).