Frequenz

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 2. November 2024 um 20:48 Uhr durch KaiMartin (Diskussion | Beiträge) (Einzelnachweise: Die von diesem Baustein präsentierten Literaturhinweise führen vom Thema des Artikels weg. Beispiele: "Frequency effects in ongoing analogical change in German imperatives: converging evidence from corpus and experimental data", "Einsteins Dissertation über Molekülgrössen.", "Rosskur für die Fachwissenschaft Physik").
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen
Physikalische Größe
Name Frequenz
Formelzeichen ,
Größen- und
Einheitensystem
Einheit Dimension
SI Hz

Die Frequenz (von lateinisch frequentia ‚Häufigkeit‘; auch Schwingungszahl[1] genannt) ist in Physik und Technik ein Maß dafür, wie schnell bei einem periodischen Vorgang die Wiederholungen aufeinander folgen, z. B. bei einer fortdauernden Schwingung. Die Frequenz ist der Kehrwert der Periodendauer.[2][3][4][5]

Die SI-Einheit der Frequenz ist das Hertz (Einheitenzeichen Hz); 1 Hz = 1 s−1 („eins pro Sekunde“).[6] Gelegentlich werden aber auch andere Einheiten verwendet, wie z. B. min−1 oder h−1. Bei der Frequenzangabe aus Zahlenwert und Einheit sagt demnach der Zahlenwert aus, wie viele Perioden innerhalb der gewählten Zeiteinheit stattfinden.

Bei manchen Vorgängen werden auch die Bezeichnungen Folgefrequenz, Impulsfolgefrequenz oder Hubfrequenz verwendet, bei Drehbewegungen Drehzahl.

Definition und Natur der Frequenz

[Bearbeiten | Quelltext bearbeiten]

Die Frequenz eines sich regelmäßig wiederholenden Vorgangs ist definiert als der Kehrwert der Periodendauer :

Da eine Anzahl der sich periodisch wiederholenden Vorgänge das Zeitintervall benötigt, gilt ebenso:

Dies wird gelegentlich auch als Definition der Frequenz angegeben.[2][7] Die Frequenz ist ihrer Natur nach eine beliebig fein veränderbare, kontinuierliche Größe.[Anm. 1]

Frequenz von Wellen

[Bearbeiten | Quelltext bearbeiten]

Bei Wellen ist die Frequenz über die Phasengeschwindigkeit mit ihrer Wellenlänge verknüpft:

Bei elektromagnetischen Wellen ist und . Dabei ist die Naturkonstante Lichtgeschwindigkeit, die Wellenlänge im Vakuum und der Brechungsindex des Mediums. Bei einer Welle, die während ihrer Ausbreitung das Medium wechselt, ändern sich die Ausbreitungsgeschwindigkeit und die Wellenlänge. Ihre Frequenz bleibt dagegen gleich.

Frequenz im Alltag

[Bearbeiten | Quelltext bearbeiten]

Für jeden periodischen Vorgang in der Natur und im Alltag kann eine Frequenz angegeben werden.

  • Der Tag-Nacht-Wechsel wiederholt sich beispielsweise mit einer Frequenz von .
  • Das menschliche Herz hat im ruhenden Körper eine Pulsfrequenz von ca. 50–90 min−1 (das entspricht 0,83–1,5 Hz).
  • Die Atemfrequenz beträgt, je nach Alter beim Menschen 12 bis 50 Atemzüge pro Minute.
  • In der Musik ist der Standard-Kammerton mit einer Frequenz von 440 Hz bekannt. Die empfundene Tonhöhe eines Tons ist hauptsächlich durch die Frequenz seiner Grundschwingung bestimmt. Das menschliche Ohr nimmt Schallwellen mit Frequenzen zwischen 20 Hz und höchstens 20.000 Hz wahr; mit zunehmendem Lebensalter sinkt die Obergrenze im Allgemeinen bis auf 10.000 Hz und weniger.
  • Elektromagnetische Wellen im Bereich zwischen ca. 100 kHz und einigen GHz werden mit elektronischen Mitteln hergestellt und für die Zwecke des Rundfunks und des Funkverkehrs in Frequenzbänder aufgeteilt (beispielsweise Langwelle, Kurzwelle, Mittelwelle, UKW, UHF). Das für Menschen wahrnehmbare Licht liegt im Bereich zwischen 400 THz und 750 THz.

Eine Reihe unterschiedlicher Messgeräte werden unter Frequenzmesser aufgeführt. Die Frequenz gilt in der digitalen Messtechnik als sehr einfach zu messende Größe, da lediglich deren Schwingungen oder Impulse während einer geeigneten Zeit gezählt werden müssen, so dass diese Messgeräte dann als Frequenzzähler bezeichnet werden.

Die relative Fehlergrenze der Frequenzmessung ergibt sich unmittelbar aus der relativen Fehlergrenze der Zeitbegrenzung. Dazu werden Zeitdauern aus einer Anzahl von Periodendauern eines möglichst genauen Frequenzgenerators gebildet, etwa eines Schwingquarzes. Selbst als Konsumartikel haben Schwingquarze relative Fehlergrenzen in der Größenordnung 0,001 %,[8][9] was ungefähr 1 Sekunde pro Tag entspricht; dieser Wert wird von der Messabweichung in Uhren vielfach noch unterboten.

Derartig kleine Fehlergrenzen sind sonst in der Messtechnik nur mit extremem Aufwand oder gar nicht erreichbar.

Frequenzspektrum

[Bearbeiten | Quelltext bearbeiten]

Reale, nicht diskrete Schwingungen bestehen immer aus mehreren überlagerten Schwingungen mit unterschiedlichen Frequenzen, da in der Natur keine perfekt sinusförmigen Schwingungen existieren. Das lässt sich unter anderem dadurch begründen, dass reale Schwingungen eine endliche Länge haben und somit durch einen Aus- und Einschwingvorgang begrenzt sind. Auch können schwingende Systeme von außen gestört werden, was mit dem Einbringen weiterer Frequenzen in die Schwingung verbunden ist. Eine mathematisch exakte Sinusschwingung ist hingegen zeitlich unbegrenzt und ungestört. Die Gesamtheit der in einer Schwingung vertretenen Frequenzen mit ihren jeweiligen Amplituden heißt Frequenzspektrum. Die Bestimmung des Frequenzspektrums einer gegebenen Schwingung heißt Fourieranalyse.

Spezielle Frequenzen

[Bearbeiten | Quelltext bearbeiten]
Größe Einheit Beschreibung Beispiele
Eigenfrequenz Hz Eine Schwingfrequenz, mit der ein System nach einmaliger Anregung als Eigenform schwingen kann idealer Schwingkreis
Resonanzfrequenz Hz Eine Frequenz bei der Anregung eines Systems, bei der die Amplitude stärker wächst als bei Anregung mit benachbarten Frequenzen realer, periodisch angeregter Schwingkreis
Drehzahl oder Umlauffrequenz min−1, s−1[6] Bei Rotation die Anzahl der Umdrehungen z. B. einer Welle in einer Zeitspanne, bezogen auf diese Zeitspanne bei Drehbewegungen, Elektromotor
Hubfrequenz min−1 In der Antriebstechnik die Anzahl der Hübe bezogen auf die Dauer der Zählung bei Linearbewegungen, Hubkolbenmotor
Impulsfolgefrequenz Hz Anzahl der gesendeten Impulse bezogen auf die Zeitspanne der Beobachtung Radartechnik

Verwandte Größen

[Bearbeiten | Quelltext bearbeiten]
Größe Einheit Beschreibung Beispiele
Kreisfrequenz s−1 In Rechnungen mit trigonometrischen Funktionen oft anstelle der Frequenz verwendet Komplexe Wechselstromrechnung
Ortsfrequenz m−1 Kehrwert der räumlichen Periodenlänge bei einem örtlich periodischen Vorgang Wellen

Auch bei weiteren Größen, die zwar die Dimension einer Rate, d. h. die SI-Einheit s−1, haben, aber keine Frequenz darstellen, etwa die radioaktive Zerfallsrate, ist die Einheit Hertz nicht zu verwenden.

Commons: Frequenz – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Frequenz – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
  1. Vereinzelt wird die Frequenz aufgrund ihrer leichten Messbarkeit durch (befristete) Zählung als diskrete oder digitale Größe bezeichnet (z. B. Rainer Felderhoff: Elektrische Meßtechnik. 2. Auflage. Hanser 1979, S. 133). Dieser Aussage ist jedoch zu widersprechen, da ein digitales Messverfahren nichts aussagt über die Natur der zu messenden Größe.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Lexikon der Physik: SchwingungszahlSpektrum.de (abgerufen am 16. Juni 2020); dort mit Verweis auf Frequenz und ebenda ebenfalls mit „Schwingungszahl“
  2. a b Robert Wichard Pohl: Pohls Einführung in die Physik. 20. Auflage. Band 1. Springer, 2008, ISBN 3-540-76337-6, S. 8.
  3. Dieter Meschede: Gerthsen Physik. 24., überarb. Auflage. Springer, 2010, ISBN 978-3-642-12894-3, S. 25.
  4. DIN 1311-1 „Schwingungen und schwingungsfähige Systeme“
  5. DIN 1304-1 „Formelzeichen“
  6. a b DIN 1301-1, -2 „Einheiten“
  7. Heinz Gascha, Stefan Pflanz: Großes Handbuch Physik. Compact, 2004, ISBN 3-8174-7429-6, S. 92.
  8. Reinhard Lerch: Elektrische Messtechnik: Analoge, Digitale Und Computergestutzte Verfahren. Springer Vieweg, 6. Auflage 2012, S. 395.
  9. Wolfgang Böge, Wilfried Plaßmann: Vieweg Handbuch Elektrotechnik: Grundlagen und Anwendungen für Elektrotechniker. Vieweg, 3. Auflage 2004, S. 426.