User:Hans G. Oberlack/Sandkiste: Difference between revisions

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
Content deleted Content added
Line 21: Line 21:
0) Area of the base semicircle <math> A_0= \frac {\pi } {2}\cdot r_0^2 \quad \approx 1.57 \cdot r_0^2</math><br>
0) Area of the base semicircle <math> A_0= \frac {\pi } {2}\cdot r_0^2 \quad \approx 1.57 \cdot r_0^2</math><br>
1) Area of the inscribed right triangle <math> A_1=\frac{a_1^2}{2} =\frac{(\sqrt2 \cdot r_0)^2}{2}=r_0^2 \quad</math><br>
1) Area of the inscribed right triangle <math> A_1=\frac{a_1^2}{2} =\frac{(\sqrt2 \cdot r_0)^2}{2}=r_0^2 \quad</math><br>
2) Area of the inscribed circle <math> A_2=\pi \cdot r_2^2 =\pi \cdot (\sqrt2-1)^2 \cdot r_0^2 =\pi \cdot (3-2\sqrt2) \cdot r_0^2 \quad</math><br>
2) Area of the inscribed circle <math> A_2=\pi \cdot r_2^2 =\pi \cdot (\sqrt2-1)^2 \cdot r_0^2 =\pi \cdot (3-2\sqrt2) \cdot r_0^2 \quad</math><br>


=== Covered surface of the base shape ===
=== Covered surface of the base shape ===

Revision as of 19:13, 4 January 2025

The semicircle as base element with given radius
. Inscribed is the largest right triangle. Within this triangle the largest circle is inscribed

General case

Segments in the general case

0) Radius of the semicircle:
1) Side length of the right triangle: , see Calculation 1
2) Radius of the inscribed circle: , see Calculation 3

Perimeters in the general case

0) Perimeter of base semicircle:
1) Perimeter of inscribed right triangle:
2) Perimeter of the inscribed circle:
S) Sum of perimeters:

Areas in the general case

0) Area of the base semicircle
1) Area of the inscribed right triangle
2) Area of the inscribed circle Failed to parse (unknown function "\cdor"): {\displaystyle A_2=\pi \cdot r_2^2 =\pi \cdot (\sqrt2-1)^2 \cdot r_0^2 =\pi \cdot (3-2\sqrt2) \cdot r_0^2 \quad \approx 0.539 \cdor r_0^2 \quad}

Covered surface of the base shape