User:Hans G. Oberlack/Sandkiste: Difference between revisions
Jump to navigation
Jump to search
Content deleted Content added
Line 21: | Line 21: | ||
0) Area of the base semicircle <math> A_0= \frac {\pi } {2}\cdot r_0^2 \quad \approx 1.57 \cdot r_0^2</math><br> |
0) Area of the base semicircle <math> A_0= \frac {\pi } {2}\cdot r_0^2 \quad \approx 1.57 \cdot r_0^2</math><br> |
||
1) Area of the inscribed right triangle <math> A_1=\frac{a_1^2}{2} =\frac{(\sqrt2 \cdot r_0)^2}{2}=r_0^2 \quad</math><br> |
1) Area of the inscribed right triangle <math> A_1=\frac{a_1^2}{2} =\frac{(\sqrt2 \cdot r_0)^2}{2}=r_0^2 \quad</math><br> |
||
2) Area of the inscribed circle <math> A_2=\pi \cdot r_2^2 =\pi \cdot (\sqrt2-1)^2 \cdot r_0^2 =\pi \cdot (3-2\sqrt2) \cdot r_0^2 \quad</math><br> |
2) Area of the inscribed circle <math> A_2=\pi \cdot r_2^2 =\pi \cdot (\sqrt2-1)^2 \cdot r_0^2 =\pi \cdot (3-2\sqrt2) \cdot r_0^2 \quad</math><br> |
||
=== Covered surface of the base shape === |
=== Covered surface of the base shape === |
Revision as of 19:13, 4 January 2025
The semicircle as base element with given radius
.
Inscribed is the largest right triangle. Within this triangle the largest circle is inscribed
General case
Segments in the general case
0) Radius of the semicircle:
1) Side length of the right triangle: , see Calculation 1
2) Radius of the inscribed circle: , see Calculation 3
Perimeters in the general case
0) Perimeter of base semicircle:
1) Perimeter of inscribed right triangle:
2) Perimeter of the inscribed circle:
S) Sum of perimeters:
Areas in the general case
0) Area of the base semicircle
1) Area of the inscribed right triangle
2) Area of the inscribed circle Failed to parse (unknown function "\cdor"): {\displaystyle A_2=\pi \cdot r_2^2 =\pi \cdot (\sqrt2-1)^2 \cdot r_0^2 =\pi \cdot (3-2\sqrt2) \cdot r_0^2 \quad \approx 0.539 \cdor r_0^2 \quad}
Covered surface of the base shape