Теорема на Болцано – Вайерщрас (за безкрайните редици)
За информацията в тази статия или раздел не са посочени източници. Въпросната информация може да е непълна, неточна или изц��ло невярна. Имайте предвид, че това може да стане причина за изтриването на цялата статия или раздел. |
- Вижте пояснителната страница за други значения на Теорема на Болцано – Вайерщрас.
Теоремата на Болцано – Вайерщрас (за безкрайните редици) гласи, че: Всяка безкрайна и ограничена редица притежава сходяща подредица.
Доказателство
[редактиране | редактиране на кода]Нека и Ако има точка на сгъстяване , то очевидно .
Да допуснем, че няма точка на сгъстяване. Тогава околност на , такава че съдържа само краен брой членове на .
Тогава обединението е покритие на интервала . От теоремата на Хайне – Борел следва, че има крайно подпокритие , състоящо се от краен брой интервали, всеки от които съдържа само краен брой членове на . Но има безбройно много членове в интервала , което е противоречие и следователно има точка на сгъстяване. С това теоремата е доказана.
Тази теорема е доказана от чешкия математик Болцано през 1817 г., а по-късно независимо от него е получена от Вайерщрас. Тя е една от основните теореми в математическия анализ.