Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul 29;4(7):e6319.
doi: 10.1371/journal.pone.0006319.

Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora

Affiliations

Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora

Markus Göker et al. PLoS One. .

Abstract

Background: Inappropriate taxon definitions may have severe consequences in many areas. For instance, biologically sensible species delimitation of plant pathogens is crucial for measures such as plant protection or biological control and for comparative studies involving model organisms. However, delimiting species is challenging in the case of organisms for which often only molecular data are available, such as prokaryotes, fungi, and many unicellular eukaryotes. Even in the case of organisms with well-established morphological characteristics, molecular taxonomy is often necessary to emend current taxonomic concepts and to analyze DNA sequences directly sampled from the environment. Typically, for this purpose clustering approaches to delineate molecular operational taxonomic units have been applied using arbitrary choices regarding the distance threshold values, and the clustering algorithms.

Methodology: Here, we report on a clustering optimization method to establish a molecular taxonomy of Peronospora based on ITS nrDNA sequences. Peronospora is the largest genus within the downy mildews, which are obligate parasites of higher plants, and includes various economically important pathogens. The method determines the distance function and clustering setting that result in an optimal agreement with selected reference data. Optimization was based on both taxonomy-based and host-based reference information, yielding the same outcome. Resampling and permutation methods indicate that the method is robust regarding taxon sampling and errors in the reference data. Tests with newly obtained ITS sequences demonstrate the use of the re-classified dataset in molecular identification of downy mildews.

Conclusions: A corrected taxonomy is provided for all Peronospora ITS sequences contained in public databases. Clustering optimization appears to be broadly applicable in automated, sequence-based taxonomy. The method connects traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account for both traditional species concepts and genetic divergence.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Optimization plots.
Modified Rand Index (MRI) plot based on the poa alignment, uncorrected distances, the globally optimal F value (1.0) and two suboptimal F values (0.0 and 0.5). Axes: x-axis, T values examined (values larger than 0.25 gave the same result because all sequences were assigned to a single cluster); y-axis, resulting MRI values for taxonomy-based optimization (thick lines) and host-based optimization (thin lines). Colours: black, F = 1.0; dark grey, F = 0.5; light grey, F = 0.0.
Figure 2
Figure 2. Dependency of the number of molecular taxonomic units (TU) on T and F.
The subset of the data with correctly formatted taxon names was analysed. Axes: x-axis, T values examined (values larger than 0.25 gave the same result because all sequences were assigned to a single cluster); y-axis, natural logarithm of the resulting number of clusters (TU) for three selected values of F. Colours: black, F = 1.0; dark grey, F = 0.5; light grey, F = 0.0.
Figure 3
Figure 3. Maximum-likelihood tree, bottom part.
Phylogram as inferred with RAxML and rooted with the Pseudoperonospora sequences present in the dataset. Branches are scaled in terms of the number of substitutions per site. Numbers above/below the branches are maximum likelihood and maximum parsimony bootstrap support values from 100 replicates. The sequence labels contain the “organism” entry and the accession number from the GenBank files; for the validity of these entries, the corrected “organism” names and the revised taxonomy, see supporting file S2. Taxonomic unit (TU) numbers from optimal clustering settings are provided in rectangular brackets. These numbers are only used to circumscribe the TU; they do not indicate relationships between the TU (e.g. TU 16 is not closer to TU 15 than to TU 91). Red labels denote accessions affected by type I conflicts, blue labels by type II conflicts, mauve labels by both type I and II conflicts and green labels by database errors due to incorrect data submission. The red (type I) or blue (type II) lines connect the accessions affected by the respective conflict, with the conflict subtype given to the right. Type I concern the presence of the same taxon in different clusters (TU), type II the presence of several taxa within the same cluster (TU). Subtypes: Ia, different TU correspond to different hosts; Ib-Ic, different TU correspond to the same host; Ib, different TU are effected by sequencing/alignment artefacts; Ic different TU are effected by high genetic variability; IIa different taxa within a TU occur on the same host species/genus; (IIa) different taxa within a TU occur on different host genera within the same family; IIb different taxa within a TU occur on different host families. The tree is continued in Fig. 4.
Figure 4
Figure 4. Maximum-likelihood tree, central part.
Phylogram as inferred with RAxML; continuation of Fig. 3 (connections indicated by arrowheads). For a description of the sequence labels and the colouring, see legend to Fig. 3. The tree is continued in Fig. 5.
Figure 5
Figure 5. Maximum-likelihood tree, top part.
Phylogram as inferred with RAxML; continuation of Fig. 4 (connections indicated by arrowheads). For a description of the sequence labels and the colouring, see legend to Fig. 3.

Similar articles

Cited by

References

    1. Blaxter M, Floyd R. Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol Evol. 2003;18:268–269.
    1. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, et al. Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc London, Ser B. 2005;360:1935–1943. - PMC - PubMed
    1. Daniell TJ, Husband R, Fitter AH, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol. 2001;36:203–209. - PubMed
    1. Floyd R, Abebe E, Papert A, Blaxter M. Molecular barcodes for soil nematode identification. Mol Ecol. 2002;11:839–850. - PubMed
    1. Helgason T, Watson IJ, Young JPW. Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Ecol. 2003;229:127–132. - PubMed

Publication types