Система числення

символічний метод з записами чисел
Немає перевірених версій цієї сторінки; ймовірно, її ще не перевіряли на відповідність правилам проекту.

Системою числення, або нумерацією, називається сукупність правил і знаків, за допомогою яких можна відобразити (кодувати) будь-яке невід'ємне число. До систем числення висуваються певні вимоги, серед яких найбільш важливими є вимоги однозначного кодування невід'ємних чисел 0, 1,… з деякої їх скінченної множини — діапазону Р за скінченне число кроків і можливості виконання щодо чисел арифметичних і логічних операцій. Крім того, системи числення розв'язують задачу нумерації, тобто ефективного переходу від зображень чисел до номерів, які в даному випадку повинні мати мінімальну кількість цифр. Від вдалого чи невдалого вибору системи числення залежить ефективність розв'язання зазначених задач і її використання на практиці.


Розрізняють такі типи систем числення:

Історія виникнення систем числення

ред.

Історично першими виникли непозиційні системи числення. Вони ґрунтуються на кількісному підході до визначення числа, який для кодування тих чи інших кількостей застосовував особливі знаки — числа. Кожному такому знаку відповідав кількісний еквівалент. Наприклад, у так званій римській нумерації знаку X відповідала кількість елементів множини, яка дорівнювала 10.

У подальшому такими знаками-числами користувалися також і для одержання інших чисел. Так, якщо перед знаком X ставилась вертикальна риска, то отримували знак IX, який означав, що від десяти треба відняти одиницю і результат буде дорівнювати 9. Знаки, подібні X, називаються вузловими. Вони широко використовувалися в первісних непозиційних системах числення. Слід ще раз зазначити, що серед цих знаків не було такого, який би відповідав нулю. Це свідчить про те, що нуль у той час ще не був сформований як число.

Кількість чисел, яку можна було одержати з допомогою непозиційного кодування, через його складність і відповідно велику кількість чисел, що потребували запам'ятовування, була обмежена кількома сотнями, і, крім того, щодо цих чисел досить важко було виконувати арифметичні й логічні операції. Тому в подальшому з розвитком науки виникла потреба в більш ефективних системах числення, які б мали прості правила кодування чисел, та легко виконували б щодо них арифметичні й логічні операції. Такі системи чисел були створені і отримали назву позиційних. Більш докладно ці системи числення будуть розглянуті нижче, тому що вони складають на сьогодні основу теорії систем числення взагалі.

Позиційна система

ред.

У позиційних системах числення одна і та ж цифра (числовий знак) у записі числа набуває різних значень залежно від своєї позиції. Таким чином, позиція цифри має вагу у числі. Здебільшого вага кожної позиції кратна деякому натуральному числу  ,  , яке називається основою системи числення.

Наприклад, якщо b - натуральне число ( ), то для представлення числа x у системі числення з основою b його подають у вигляді лінійної комбінації степенів числа b:

 , де   — цілі,  

Іншими словами, основа - це кількість символів, що використовуються при записуванні чисел.

Приклад

Наприклад, число «двісті чотири» представляється у десятковій системі числення у вигляді:

 

Використовуючи позиційний принцип, можна зобразити будь-яке дійсне число за допомогою усього лиш десяти цифр у їх різних комбінаціях.

Змішана система

ред.

Змішана система числення є узагальненням системи числення з основою   і її часто відносять до позиційних систем числення. Основою змішаної системи є послідовність чисел, що зростає,   і кожне число   представляється як лінійна комбінація:

 , де на коефіцієнти   (цифри) накладаються деякі обмеження.

Якщо   для деякого  , то змішана система збігається з  -основною системою числення.

Найвідомішим прикладом змішаної системи числення є представлення часу у вигляді кількості діб, годин, хвилин і секунд. При цьому величина d днів h годин m хвилин s секунд відповідає значенню   секунд.

Система числення Фібоначчі

ред.

Представлення засновується на числах Фібоначчі:

 , де   — числа Фібоначчі,  , при цьому у записі   не зустрічаються дві одиниці підряд.

Факторіальна система числення

ред.

Представлення використовує факторіал натуральних чисел:

 , де  .

Біноміальна система числення

ред.

Представлення використовує біноміальні коефіцієнти:

 , де  .

Система числення мая

ред.

Мая використовували двадцяткову систему числення за одним винятком: у другому розряді було не 20, а 18 ступенів, тобто після числа (17)(19) відразу йшло число (1)(0)(0). Це було зроблено для полегшення розрахунків календарного циклу, оскільки (1)(0)(0) дорівнювало 360, що приблизно дорівнює кількості днів у сонячному році.

Непозиційна система

ред.

У непозиційних системах числення величина, яку позначає цифра, не залежить від позиції її у числі. При цьому система може накладати обмеження на позиції цифр, наприклад, щоб вони були розташовані по спаданню, чи згруповані за значенням. Проте це не є принциповою умовою для розуміння записаних такими системами чисел.

Типовим прикладом непозиційної системи числення є римська система числення, в якій як цифри використовуються латинські букви:

Римська цифра Десяткове значення
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Наприклад, VII = 5 + 1 + 1 = 7. Тут символи V і I означають 5 і 1, відповідно, незалежно від місця їх у числі.

Застосування

ред.

У нумізматиці особливо велику вагу мають десяткова система, дванадцяткова (дуодецимальна), четвіркова та шісткова системи. У інформаційних технологіях застосовуються двійкова, десяткова, вісімкова, та шістнадцяткова системи.

Див. також

ред.