การหลอมนิวเคลียส
ฟิสิกส์ของนิวเคลียส |
---|
กรอบความคิดเกี่ยวกับนิวเคลียส · นิวคลีออน (p, n) · แรงนิวเคลียส · โครงสร้างนิวเคลียส · ปฏิกิริยานิวเคลียร์ |
การหลอมนิวเคลียส (อังกฤษ: nuclear fusion) ในทางฟิสิกส์นิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์อย่างหนึ่งที่นิวเคลียสของอะตอมหนึ่งตัวหรือมากกว่าเข้ามาอยู่ใกล้กัน แล้วชนกันที่ความเร็วสูง รวมตัวกันกลายเป็นนิวเคลียสของอะตอมใหม่ที่หนักขึ้น ในระหว่างกระบวนการนี้ มวลของมันจะไม่เท่าเดิมเพราะมวลบางส่วนของนิวเคลียสที่รวมต้วจะถูกเปลี่ยนไปเป็นพลังงานโปรตอน
การหลอมนิวเคลียสสองนิวเคลียสที่มีมวลต่ำกว่าเหล็ก-56 (ที่ ��ร้อมกับนิกเกิล-62 มีพลังงานยึดเหนี่ยวต่อนิวคลีออนที่ใหญ่ที่สุด) โดยทั่วไปจะปลดปล่อยพลังงานออกมา ในขณะที่การหลอมนิวเคลียสที่หนักกว่าเหล็กจะ "ดูดซับ" พลังงาน การทำงานที่ตรงกันข้ามเรียกว่า "การแบ่งแยกนิวเคลียส" ซึ่งหมายความว่าโดยทั่วไปองค์ประกอบที่เบากว่าเท่านั้นที่สามารถหลอม เช่นไฮโดรเจนและฮีเลียม และในทำนองเดียวกันโดยทั่วไปองค์ประกอบที่หนักกว่าเท่านั้นที่สามารถแบ่งแยกได้ เช่นยูเรเนียมและพลูโทเนียม มีเหตุการณ์ทางดาราศาสตร์แบบสุดขั้วอย่างมากที่สามารถนำไปสู่ช่วงเวลาสั้น ๆ ของการหลอมด้วยนิวเคลียสที่หนักกว่า นี้เป็นกระบวนการที่ก่อให้เกิด nucleosynthesis ที่เป็นการสร้างธาตุหนักในช่วงเหตุการณ์ที่เรียกว่ามหานวดารา
หลังการค้นพบ "อุโมงค์ควอนตัม" โดยนักฟิสิกส์ นายฟรีดริช ฮุนท์ ในปี 1929 นายโรเบิร์ต แอตกินสันและนายฟริตซ์ Houtermans ใช้มวลขององค์ประกอบเบาที่วัดได้ในการคาดการณ์ว่าจำนวนมากของพลังงานสามารถที่จะถูกปลดปล่อยจากการทำหลอมนิวเคลียสขนาดเล็ก การหลอมในห้องปฏิบัติการของไอโซโทปของไฮโดรเจน เมื่อสร้างขึ้นระหว่างการทดลองการแปรนิวเคลียสโดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้ดำเนินการมาหลายปีก่อนหน้านี้ ก็ประสบความสำเร็จเป็นครั้งแรกโดยนายมาร์ค Oliphant ในปี 1932 ในช่วงที่เหลือของทศวรรษนั้น ขั้นตอนของวงจรหลักของการหลอมนิวเคลียสในดวงดาวได้รับการทำงานโดยนายฮันส์ Bethe การวิจัยในหลอมเพื่อวัตถุประสงค์ทางทหารเริ่มต้นขึ้นในช่วงต้นของทศวรรษที่ 1940 เมื่อเป็นส่วนหนึ่งของโครงการแมนแฮตตัน การหลอมก็ประสบความสำเร็จในปี 1951 ด้วยการทดสอบนิวเคลียร์แบบ "รายการเรือนกระจก" การหลอมนิวเคลียสในขนาดที่ใหญ่ในการระเบิดครั้งหนึ่งได้มีการดำเนินการครั้งแรกในวันที่ 1 พฤศจิกายน 1952 ในการทดสอบระเบิดไฮโดรเจนรหัสไอวีไมก์ (Ivy Mike)
การวิจัยเพื่อการพัฒนา thermonuclear fusion ที่ควบคุมได้สำหรับวัตถุประสงค์ทางพลเรือนก็ได้เริ่มขึ้นอย่างจริงจังในปี 1950 เช่นกัน และยังคงเป็นไปจนทุกวันนี้
กระบวนการ
[แก้]ต้นกำเนิดของพลังงานที่ปล่อยออกมาในการหลอมรวม (อังกฤษ: fusion) ขององค์ประกอบเบาจะเกิดจากการมีปฏิสัมพันธ์ของสองแรงที่ตรงข้ามกัน แรงหนึ่งคือแรงนิวเคลียสซึ่งรวมแรงจากโปรตอนและนิวตรอนเข้าด้วยกัน อีกแรงหนึ่งคือแรงคูลอมบ์ซึ่งเป็นสาเหตุให้โปรตอนทั้งหลายผลักกันเอง โปรตอนจะมีประจุบวกและผลักกันเอง แต่พวกมันก็ยังคงอยู่ติดกัน แสดงให้เห็นถึงการดำรงอยู่ของอีกแรงหนึ่งที่เรียกว่าแรงดึงดูดของนิวเคลียส แรงนี้ถูกเรียกว่าแรงนิวเคลียร์ที่แข็งแกร่ง มันเอาชนะแรงผลักไฟฟ้าในระยะที่ใกล้กันมาก ผลของแรงนี้จะไม่สังเกตได้นอกนิวเคลียส นั่นคือความแรงจะขึ้นอยู่กับระยะทาง ทำให้มันเป็นแรงวิสัยใกล้ แรงเดียวกันยังดึงนิวคลีออน (นิวตรอนและโปรตอน) ให้อยู่ด้วยกัน[2] เนื่องจากว่าแรงนิวเคลียสจะแข็งแกร่งกว่าแรงคูลอมบ์สำหรับนิวเคลียสของอะตอมที่มีขนาดเล็กกว่าธาตุเหล็กและนิกเกิล การสร้างนิวเคลียสเหล่านี้ขึ้นจากนิวเคลียสที่เบากว่าโดยการหลอม จะปลดปล่อยพลังงานมากขึ้นจากแรงดึงดูดสุทธิของอนุภาคเหล่านี้ อย่างไรก็ตาม สำหรับนิวเคลียสที่มีขนาดใหญ่กว่า จะไม่มีพลังงานถูกปล่อยออกมา เนื่องจากแรงนิวเคลียสเป็นแรงพิสัยใกล้และไม่สามารถกระทำต่อเนื่องกับนิวเคลียสขนาดใหญ่ที่อยู่นิ่ง ๆ ได้ ดังนั้นพลังงานจะไม่ถูกปล่อยออกมาอีกต่อไปเมื่อนิวเคลียสดังกล่าวถูกทำขึ้นโดยการหลอม แต่พลังงานจะถูกดูดซึมในกระบวนการดังกล่าวแทน
ปฏิกิริยาการหลอมธาตุเบาเป็นผู้ให้พลังงานกับดวงดาวและเป็นผู้ผลิตแทบทุกธาตุในกระบวนการที่เรียกว่าการสังเคราะห์นิวเคลียส การหลอมของธาตุที่เบากว่าในดวงดาวจะปลดปล่อยพลังงานออกมา(และมวลที่มักจะออกมาพร้อมกับมัน) ยกตัวอย่างเช่นในการหลอมของสองนิวเคลียสไฮโดรเจนให้เป็นฮีเลียม 0.7% ของมวลจะหลุดออกไปจากระบบในรูปแบบของพลังงานจลน์หรือรูปแบบอื่น ๆ ของพลังงาน (เช่นรังสีแม่เหล็กไฟฟ้า)[3]
ในการวิจัยเพื่อการควบคุมการหลอม โดยมีวัตถุประสงค์เพื่อผลิตพลังงานการหลอมสำหรับการผลิตไฟฟ้า มีการดำเนินการมานานกว่า 60 ปี มันพบกับความยุ่งยากทางวิทยาศาสตร์และเทคโนโลยีอย่างมาก แต่ก็มีผลคืบหน้า ในปัจจุบันปฏิกิริยาการหลอมที่ควบคุมได้ไม่สามารถที่จะผลิตปฏิกิริยาการหลอม (ด้วยตนเองอย่างยั่งยืน) ที่คุ้มค่าการลงทุนได้[4] การออกแบบที่ใช้การได้สำหรับเครื่องปฏิกรณ์ที่ในทางทฤษฎีแล้วจะส่งพลังงานการหลอมเป็นสิบเท่าของจำนวนพลังงานที่จำเป็นเพื่อสร้างความร้อนให้กับพลาสม่าจนถึงอุณหภูมิที่ต้องการอยู่ในระหว่างการพัฒนา (ดู ITER) สิ่งอำนวยความสะดวกใน ITER คาดว่าจะเสร็จสิ้นขั้นตอนการก่อสร้างในปี 2019 มันก็จะเริ่มติดตั้งเครื่องปฏิกรณ์ในปีเดียวกันและเริ่มต้นการทดลองพลาสม่าในปี 2020 แต่ไม่คาดว่ามันจะเริ่มการหลอมดิวเทอเรียม-ไอโซโทปเต็มรูปแบบจนกว่าจะถึงปี 2027[5]
มันต้องใช้พลังงานอย่างมากในการที่จะบังคับให้นิวเคลียสหลอมละลาย แม้แต่ธาตุที่มีน้ำหนักเบาที่สุดเช่นไฮโดรเจน เป็นเพราะว่านิวเคลียสทุกตัวมีประจุบวกอันเนื่องมาจากโปรตอนในตัวมัน และเป็นอย่างเช่นกกแรงผลักของประจุ นิวเคลียสจะต่อต้านอย่างแรงถ้าถูกวางอยู่ใกล้กัน เมื่อถูกเร่งให้มีความเร็วสูง พวกมันสามารถเอาชนะแรงผลักไฟฟ้าสถิตนี้และจะถูกบังคับให้อยู่ใกล้พอสำหรับแรงดึงดูดนิวเคลียร์จนมีความแข็งแรงพอที่จะบรรลุการหลอม การหลอมของนิวเคลียสที่เบากว่า ซึ่งจะสร้างนิวเคลียสที่หนักขึ้นและมักจะเป็นนิวตรอนอิสระหรือโปรตอน โดยทั่วไปจะปลดปล่อยพลังงานมากขึ้นกว่าที่มันได้รับเพื่อที่จะบังคับให้นิวเคลียสทั้งหลายอยู่ด้วยกัน นี้เป็นกระบวนการคายความร้อนแบบหนึ่งที่สามารถผลิตปฏิกิริยาด้วยตนเองอย่างยั่งยืน สถานีจุดระเบิดแห่งชาติของสหรัฐ ซึ่งใช้การหลอมในภาชนะปิดที่เฉื่อยแบบขับเคลื่อนด้วยเลเซอร์ (อังกฤษ: laser-driven inertial confinement fusion) ได้รับการคาดการณ์ว่าจะสามารถสร้างปฏิกิริยาการหลอมที่คุ้มทุนได้
การทดลองเป้าหมายเลเซอร์ขนาดใหญ่ได้ดำเนินการเป็นครั้งแรกในเดือนมิถุนายนปี 2009 และการทดลองการจุดระเบิดเริ่มต้นขึ้นในช่วงต้นปี 2011[6][7]
พลังงานที่ถูกปล่อยออกมาในปฏิกิริยานิวเคลียร์ส่วนใหญ่จะมีขนาดใหญ่กว่าในปฏิกิริยาเคมีอย่างมาก เพราะพลังงานยึดเหนี่ยวที่ยึดนิวเคลียสเอาไว้จะมีขนาดใหญ่กว่าพลังงานที่ยึดอิเล็กตรอนไว้กับนิวเคลียส ยกตัวอย่างเช่นพลังงานจากการแตกตัวเป็นไอออน (อังกฤษ: ionization energy) ที่ได้รับโดยการเพิ่มอิเล็กตรอนหนึ่งตัวกับนิวเคลียสไฮโดรเจนหนึ่งตัวเป็น 13.6 eV -น้อยกว่าหนึ่งในล้านของ 17.6 MeV ที่ถูกปล่อยออกมาในปฏิกิริยาดิวเทอเรียม-ไอโซโทป (D-T) ที่ได้แสดงในแผนภาพทางขวา (หนึ่งกรัมของสารจะปล่อย 339 GJ ของพลังงาน) ปฏิกิริยาการหลอมมีความหนาแน่นของพลังงานมากกว่าปฏิกิริยานิวเคลียร์ฟิชชันหลายเท่า ปฏิกิริยาการหลอมจะผลิตพลังงานต่อหน่วยของมวลมากกว่าอย่างมากแม้ว่าปฏิกิริยาฟิชชันแต่ละครั้งโดยทั่วไปจะมีพลังมากกว่าปฏิกิริยาการหลอมแต่ละครั้ง และปฏิกิริยาทั้งสองแบบยังมีพลังมากกว่าปฏิกิริยาทางเคมีหลายล้านเท่า มีแต่การแปลงโดยตรงของมวลไปเป็นพลังงานเท่านั้นที่มีพลังต่อหน่วยของมวลมากกว่าการหลอมนิวเคลียส เช่นที่เกิดจากการชนกันแบบทำลายล้างของสสารและปฏิสสาร
การหลอมนิวเคลียสในดวงดาว
[แก้]กระบวนการหลอมที่สำคัญที่สุดในธรรมชาติเป็นสิ่งที่ให้พลังงานกับดวงดาว ในศตวรรษที่ 20 มีการตระหนักว่าพลังงานที่ปล่อยออกมาจากปฏิกิริยาการหลอมนิวเคลียสเป็นตัวกำหนดอายุขัยของดวงอาทิตย์และดาวอื่น ๆ โดยเป็นแหล่งที่มาของความร้อนและแสงสว่าง การหลอมของนิวเคลียสทั้งหลายในดาวดวงหนึ่งเริ่มต้นจากความอุดมสมบูรณ์ของไฮโดรเจนและฮีเลียมในช่วงแรก เกิดเป็นพลังงานและการสังเคราะห์นิวเคลียสขึ้นใหม่เป็นผลพลอยได้จากกระบวนการหลอมนั้น ผู้ผลิตพลังงานหลักในดวงอาทิตย์เป็นการหลอมของไฮโดรเจนก่อตัวเป็นก๊าซฮีเลียมซึ่งเกิดขึ้นที่อุณหภูมิแกนกลางของดวงอาทิตย์ที่ 14 ล้านเคลวิน ผลสุทธิคือการหลอมรวมของสี่โปรตอนกลายเป็นหนึ่งอนุภาคแอลฟาพร้อมกับการปลดปล่อยโพสิตรอนสองตัวและนิวตริโนสองตัว (ซึ่งเปลี่ยนสองโปรตอนไปเป็นนิวตรอน) และพลังงาน ห่วงโซ่ปฏิกิริยาที่แตกต่างกันเข้ามามีส่วนร่วม ขึ้นอยู่กับมวลของดาว สำหรับดาวขนาดดวงอาทิตย์หรือเล็กกว่าห่วงโซ่โปรตอน-โปรตอนจะเป็นปฏิกิริยาหลัก ในดาวที่หนักกว่า วัฏจักร CNO (อังกฤษ: Carbon Nitrogen Oxigen Cycle) มีความสำคัญมากกว่า
เมื่อดาวใช้ขึ้นส่วนที่สำคัญของไฮโดรเจนของมันหมดไปเรื่อย ๆ มันก็เริ่มที่จะสังเคราะห์ธาตุที่หนักกว่าโดยเป็นส่วนหนึ่งของการสังเคราะห์นิวเคลียสแบบดารา (อังกฤษ: stellar nucleosynthesis) อย่างไรก็ตามธาตุที่หนักที่สุดจะมีการสังเคราะห์โดยการหลอมที่เกิดขึ้นเมื่อดาวที่มีมวลขนาดใหญ่มากกว่าผ่านการซูเปอร์โนวาที่มีความรุนแรงในตอนท้ายของชีวิตของมัน กระบวนการนี้เรียกว่าการสังเคราะห์นิวเคลียสแบบซูเปอร์โนวา (อังกฤษ: supernova nucleosynthesis)
ข้อกำหนด
[แก้]ดูเพิ่ม
[แก้]- พลังงานการหลอม
- ��ิสิกส์นิวเคลียร์
- การแบ่งแยกนิวเคลียส
- เครื่องปฏิกรณ์นิวเคลียร์
- นิวคลีโอซินทีสิส
- เจ็ท (พลังงานการหลอม)
- Tokamak
แหล่งข้อมูลอื่น
[แก้]- International Fusion Research and Prototype reactor
- Fusion.org.uk เก็บถาวร 2021-03-19 ที่ เวย์แบ็กแมชชีน
อ้างอิง
[แก้]- ↑
Shultis, J.K. and Faw, R.E. (2002). Fundamentals of nuclear science and engineering. CRC Press. p. 151. ISBN 0-8247-0834-2.
{{cite book}}
: CS1 maint: multiple names: authors list (ลิงก์) - ↑ Physics Flexbook. Ck12.org. Retrieved on 2012-12-19.
- ↑ Bethe, Hans A. "The Hydrogen Bomb", Bulletin of the Atomic Scientists, April 1950, p. 99.
- ↑ "Progress in Fusion". ITER. สืบค้นเมื่อ 2010-02-15.
- ↑ "ITER – the way to new energy". ITER. 2014.
- ↑ "The National Ignition Facility: Ushering in a new age for high energy density science". National Ignition Facility. สืบค้นเมื่อ 2014-03-27.
- ↑ "DOE looks again at inertial fusion as potential clean-energy source", David Kramer, Physics Today, March 2011, p 26