Масс-спектрометрия
Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ, аббр. МС) — метод исследования и идентификации вещества, позволяющий определять концентрацию различных компонентов в нём (изотопный, элементный или химический состав). Основой для измерения служит ионизация компонентов, позволяющая физически различать компоненты на основе характеризующего их отношения массы к заряду и, измеряя интенсивность ионного тока, производить отдельный подсчёт доли каждого из компонентов (получать масс-спектр вещества).
В силу того, что химический состав позволяет судить о свойствах и происхождении вещества, масс-спектрометрия имеет большое значение в науке, промышленности и медицине .
История масс-спектрометрии ведётся с основополагающих опытов Дж. Дж. Томсона в начале XX века. Окончание «-метрия» в названии метода появилось после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.
Масс-спектр
[править | править код]Масс-спектр — зависимость интенсивности ионного тока (количества вещества) от отношения массы к заряду (природы вещества). Поскольку масса любой молекулы складывается из масс составляющих её атомов, масс-спектр всегда дискретен, хотя при низком разрешении масс-спектрометра пики разных компонентов могут перекрываться или даже сливаться. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут влиять на масс-спектр (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так, ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным.
Принцип работы и устройство масс-спектрометра
[править | править код]На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца, искажающая ее траекторию. Определяя разницу траекторий ионизированных атомов, движущихся в магнитном поле, можно делать выводы о соотношении массы и заряда иона.
Конструкция масс-спектрометра включает в себя ионизатор вещества образца, ускоритель ионов, источник мощного магнитного поля и набор детекторов потока ионов.
Источники ионов
[править | править код]Первое, что надо сделать для того, чтобы получить масс-спектр, — превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы — ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс-спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеиваются и рекомбинируют (превращаются обратно в незаряженные частицы).
Большинство небольших молекул при ионизации приобретают только один положительный или отрицательный заряд. Чем больше молекула, тем больше вероятность того, что во время ионизации она превратится в многозарядный ион. Поэтому особенно сильно данный эффект проявляется в отношении крайне больших молекул, например, белков, нуклеиновых кислот и полимеров. При некоторых видах ионизации (например, электронный удар) молекула может распадаться на несколько характерных частей, что даёт дополнительные возможности идентификации и исследования структуры неизвестных веществ.
Условно способы ионизации органических веществ можно классифицировать по фазам, в которых находятся вещества перед ионизацией.
Газовая фаза
- электронная ионизация (EI)
- химическая ионизация (CI)
- Ионизация захватом электрона[англ.] (EC)
- ионизация в электрическом поле (FI)
Жидкая фаза
- термоспрей
- ионизация при атмосферном давлении (AP)
- электроспрей (APESI)
- химическая ионизация при атмосферном давлении (APCI)
- фотоионизация при атмосферном давлении (APPI)
Твёрдая фаза
- прямая лазерная десорбция — масс-спектрометрия (LDMS)
- матрично-активированная лазерная десорбция/ионизация (MALDI)
- масс-спектрометрия вторичных ионов (SIMS)
- бомбардировка быстрыми атомами (FAB)
- десорбция в электрическом поле (FD)
- плазменная десорбция (PD)
В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.
- ионизация в индуктивно-связанной плазме (ICP)
- термоионизация или поверхностная ионизация
- ионизация в тлеющем разряде и искровая ионизация (см. искровой разряд)
- ионизация в процессе лазерной абляции
Исторически первые методы ионизации были разработаны для газовой фазы.
Очень многие органические вещества невозможно испарить, то есть перевести в газовую фазу, без разложения. А это значит, что их нельзя ионизовать электронным ударом. Но среди таких веществ почти всё, что составляет живую ткань (белки, ДНК и т. д.), физиологически активные вещества, полимеры, то есть всё то, что сегодня представляет особый интерес. Масс-спектрометрия не стояла на месте и в последние годы были разработаны специальные методы ионизации таких органических соединений. Сегодня используются, в основном, два из них — ионизация при атмосферном давлении и её подвиды — электроспрей (ESI), химическая ионизация при атмосферном давлении (APCI) и фотоионизация при атмосферном давлении (APPI), а также ионизация лазерной десорбцией при содействии матрицы (MALDI).
Масс-анализаторы
[править | править код]Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс-спектрометрического анализа — сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:
непрерывные масс-анализаторы
- Магнитный и электростатический секторный масс-анализатор (англ. Sector instrument)
- Квадрупольный масс-анализатор (англ. Quadrupole mass analyzer)
импульсные масс-анализаторы
- Времяпролётный масс-анализатор (англ. Time-of-flight mass spectrometry)
- Ионная ловушка (англ. Ion trap)
- Квадрупольная линейная ловушка (англ. Quadrupole ion trap)
- Масс-анализатор ионно-циклотронного резонанса с Фурье-преобразованием (англ. Fourier transform ion cyclotron resonance)
- Орбитрэп (англ. Orbitrap)
Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первых ионы поступают непрерывным потоком, а во вторых — порциями, через определённые интервалы времени.
Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс-спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом, первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс-спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.
Детекторы
[править | править код]Итак, последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пу��ок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант — фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).
Хромато-масс-спектрометрия
[править | править код]Масс-спектрометры используются для анализа органических и неорганических соединений.
Органические образцы в большинстве случаев представляют собой сложные смеси индивидуальных веществ. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).
Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/ТМС (англ. LC/MS). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.
Характеристики масс-спектрометров и масс-спектрометрических детекторов
[править | править код]Этот раздел статьи ещё не написан. |
Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость сканирования.
При анализе органических соединений наиболее важной характеристикой является чувствительность. Для улучшения чувствительности путём увеличения отношения сигнала к шуму прибегают к ионно-селективному детектированию. При использовании данного метода на приборах низкого разрешения ухудшается не менее важный параметр — достоверность, ввиду высокой сложности подтверждения соответствия результатов с теоретическими ожиданиями. В приборах с двойной фокусировкой при использовании высокого разрешения данная проблема отсутствует. Альтернативным методом анализа является тандемная масс-спектрометрия, характерной особенностью которой является возможность подтверждения результатов основного измерения исходных ионов вторичными детекторами дочерних ионов. Наиболее чувствительным прибором для анализа органических соединений является хромато-масс-спектрометр высокого разрешения с двойной фокусировкой.
По характеристике сочетания высокой чувствительности с достоверностью определения компонентов следует отметить классические квадрупольные приборы нового поколения. Использование новейших технологий (например, искривлённого квадрупольного префильтра для снижения шума путём предотвращения попадания нейтральных частиц в детектор) позволяет добиваться высоких характеристик прибора.
Применения масс-спектрометрии
[править | править код]Разработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика. Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.
Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков — бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надёжна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соответствие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.
В эпоху «химизации сельского хозяйства» весьма важным стал вопрос о присутствии следовых количеств применяемых химических средств (например, пестицидов) в пищевых продуктах. В мизерных количествах эти вещества могут нанести непоправимый вред здоровью человека.
Целый ряд техногенных (то есть не существующих в природе, а появившихся в результате индустриальной деятельности человека) веществ являются супертоксикантами (имеющими отравляющее, канцерогенное или вредное для здоровья человека действие в предельно низких концентрациях). Примером являются хорошо известные диоксины.
Существование ядерной энергетики немыслимо без масс-спектрометрии. С её помощью определяется степень обогащения расщепляющихся материалов и их чистота.
Масс-спектрометрия также используется в медицине. Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter pylori и является самым надёжным из всех методов диагностики. Также масс-спектрометрия применяется для определения наличия допинга в крови спортсменов.
Трудно представить область человеческой деятельности, где не нашлось бы места масс-спектрометрии[1]. Ограничимся просто перечислением: аналитическая химия, биохимия, клиническая химия, общая химия и органическая химия, фармацевтика, косметика, парфюмерия, пищевая промышленность, химический синтез, нефтехимия и нефтепереработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология, криминалистика, допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия, геология, гидрология, петрография, минералогия, геохронология, археология, ядерная промышленность и энергетика, полупроводниковая промышленность, металлургия.
История масс-спектрометрии
[править | править код]- 1912 год — Дж. Дж. Томсон создаёт первый масс-спектрограф и получает масс-спектры молекул кислорода, азота, угарного газа, углекислого газа и фосгена.
- 1913 год — С помощью своего масс-спектрографа Дж. Дж. Томсон открывает изотопы неона: неон-20 и неон-22.
- 1918 год — Артур Демпстер строит первый масс-спектрограф.
- 1919 год — Фрэнсис Астон, независимо от Демпстера, строит свой первый масс-спектрограф и начинает исследования изотопов. Этот прибор имел разрешающую способность около 130.
- 1923 год — Астон измеряет с помощью масс-спектрометра дефект массы.
- 1932 год — Кеннет Бейнбридж строит масс-спектрометр с разрешающей способностью 600 и чувствительностью 1 часть на 10 тыс.
- 1934 год — Конрад применяет масс-спектрометрию для анализа органических молекул.
- 1936 год — Артур Демпстер, Кеннет Бэйнбридж (англ. Kenneth Tompkins Bainbridge) и Йозеф Маттаух[англ.] (англ. Josef Heinrich Elizabeth Mattauch) конструируют масс-спектрограф с двойной фокусировкой[2]. Демпстер разрабатывает искровой источник ионизации.
- 1940 год — Альфред Нир[англ.] с помощью препаративной масс-спектрометрии выделяет уран-235.
- 1940 год — Альфред Нир создаёт первый надёжный источник электронного удара, применив ионизационную камеру.
- 1942 год — Лоуренс запускает «калютрон» — промышленную установку по разделению изотопов урана, основанную на магнитно-секторном масс-спектрометре.
- 1946 год — Уильям Стивенс (англ. William E. Stephens) предлагает концепцию времяпролётного масс-спектрометра.
- 1948 год — Камероном (англ. A. E. Cameron) и Эггерсом (D. F. Eggers Jr) создан первый масс-спектрометр с времяпролётным масс-анализатором.
- 1952 год — В. Л. Тальрозе и А. К. Любимова впервые наблюдают сигнал метония CH5+ в ионном источнике электронного удара при повышенном давлении метана в ионизационной камере (в 1966 году Мансон и Филд применят это открытие для аналитических целей и создадут ионный источник с химической ионизацией).[3]
- 1953 год — Пауль патентует квадрупольный масс-анализатор и ионную ловушку.
- 1956 год — Фред МакЛафферти и Голке создают первый газовый хромато-масс-спектрометр.
- 1966 год — Мансон и Филд создают ионный источник с химической ионизацией.
- 1972 год — Каратаев и Мамырин изобретают время-пролётный масс-анализатор с фокусировкой, значительно улучшающий разрешение анализатора.
- 1974 год — Первый жидкостный хромато-масс-спектрометр создан Арпино, Болдуином и МакЛафферти
- 1981 год — Барбер, Бордоли, Седжвик и Тайлор создают ионизатор с бомбардировкой быстрыми атомами (FAB).
- 1982 год — Первый масс-спектр целого белка (инсулин) с помощью бомбардировки быстрыми атомами (FAB).
- 1983 год — Бланки и Бестал изобретают термоспрей.
- 1984 год — Л. Н. Галль, а затем Фенн публикуют работы по методу электроспрей.[4]
- 1987 год — Карас, Бахман, Бар и Хилленкамп изобретают ионизацию лазерной десорбцией при содействии матрицы (MALDI).
- 1999 год — Александр Макаров изобретает электростатическую ионную ловушку «Орбитрэп».
См. также
[править | править код]- Масс-спектрометры для изотопного анализа
- Спектроскопия
- Спектроскопические методы
- Инструментальные методы анализа
- Таблицы Бейнона
- Фильтр Вина
- Ускорительный масс-спектрометр (Accelerator mass spectrometry[англ.])
Примечания
[править | править код]- ↑ Полищук В. Р. Как разглядеть молекулу. — М., Химия, 1979. — Тираж 70000 экз. — С. 121—135
- ↑ Arthur Jeffrey Dempster (American physicist) (англ.). Encyclopædia Britannica.
- ↑ Talrose V. L., Ljubimova A. K. Secondary Processes in the Ion Source of a Mass Spectrometer (Reprint from 1952). J. Mass Spectrom. 1998, 33, 502—504.
- ↑ История создания метода ЭРИАД . Дата обращения: 7 июля 2024. Архивировано 7 июля 2024 года.