В статье не хватает ссылок на источники (см. рекомендации по поиску). |
Издали Марс выглядит рыжевато-красным из-за красной пыли, которая лежит на поверхности и поднимается ветрами в атмосферу. Отдельные участки поверхности могут иметь желтовато-коричневый цвет с примесью золотистого, бурого, рыжевато-коричневого и даже зеленого, в зависимости от цвета минералов. Уже в древности люди с лёгкостью отличали Марс по красной окраске от других планет, а также ассоциировали его с войной и слагали об этом всевозможные мифы. Египтяне называли Марс «Хар Дечер», что означало «красный». В Индии планета была известна под именами Ангарака или Лохитанга, оба названия подразумевали ярко-красный цвет, который можно было заметить невооруженным взглядом. Современные исследования показали, что не только поверхность имеет такой оттенок, но и небо планеты имеет свойство восприниматься глазом человека как красное.
Причина интенсивности красного цвета
правитьВ настоящее время[когда?] ученые[кто?] полагают, что только верхний слой поверхности Марса — красный. Планета выглядит рыжевато-красной в основном из-за повсеместного слоя пыли (частицы размером от 3 до 45 мкм), толщина которого составляет всего несколько миллиметров.
Даже в таких местах, как, например, нагорье Фарсида, где слой красной пыли больше, чем в других районах планеты, его толщина все равно не превышает 2 м. Таким образом, красная пыль, по сути, является тончайшей оболочкой Марса и не распространяется на более глубокие слои марсианского грунта.
Марс выглядит красным вследствие оптических свойств наноразмерных частиц оксидов железа (npOx), которые преобладают в видимом участке спектра. Благодаря инфракрасным дистанционным датчикам спектрометра OMEGA автоматической межпланетной станции Европейского космического агентства Марс-экспресс удалось выяснить, что на планете существуют различные npOx минералы, однако в основном преобладает нанокристаллический красный гематит (α-Fe2O3), который распространяется на 100 мкм в глубину. Остальная доля частичек железа в пыли (составляющая, возможно, около 50 % всей массы), может быть представлена магнетитом (Fe3O4), обогащённым титаном. Магнетит обычно черного цвета, поэтому он мало влияет на красный цвет почвы.
Массовая доля хлора и серы в марсианской пыли на самом деле выше, чем предполагалось до экспедиции Spirit and Opportunity Rovers, во время которой были взяты образцы почвы в кратере Гусева и на равнине Плато Меридиана. Сера хорошо взаимодействует с npOx. Это говорит о том, что незначительные изменения химического состава тонкого слоя солевого раствора, который находится в марсианской пыли и способствует образованию изморози из атмосферной воды, могут привести к образованию npOx. Кроме того, дистанционное изучение атмосферной пыли (которая по составу и размеру мало отличается от пыли, покрывающей поверхность планеты) указывает на то, что она в основном состоит из полевых шпатов подгруппы плагиоклаза, цеолита, а также небольшого количества пироксена и оливина. Подобный материал может легко образовываться в процессе механической эрозии базальта, который содержит в своем составе полевой шпат и имеет много общего с марсианской породой южной части планеты. В совокупности все собранные данные показали, что химические изменения состава марсианской пыли под воздействием воды очень незначительны.
Во время некоторых процессов npOx способны окисляться без участия свободного кислорода O2, несколько подобных процессов происходят на Марсе, так как атмосферные изменения с течением геологического времени указывают на то, что свободный кислород O2 (появившийся в основном посредством фотодиссоциации H2O), возможно, всегда существовал на планете в виде микрокомпонента с парциальным давлением не более 0,1 мкПа. Один из таких процессов включает в себя прямую химическую реакцию Fe2+ (происходящую в магматических минералах), или реакцию Fe с H2O, в ходе которой получается Fe3+(aq), который благодаря определенным условиям, в свою очередь, ведет к образованию гидроксид-иона, например гётита (FeO•OH). Несмотря на то, что реакция с H2O плохо проходит с точки зрения термодинамики, она всё же возможна в ходе резкой потери побочного продукта H2. Растворённые CO2 и SO2 могут также способствовать реакции.
Однако для разложения Fe3+ метагидроксидов железа, например для разложения гётита в гематит, требуются высокие температуры (300 °C). Похожие процессы происходят при образование тефры, состоящей из палагонита, на верхушках склонов вулкана Мауна-Кеа, так как существуют некоторые спектральные и магнетические сходства с тефрой и марсианской пылью. Несмотря на то, что для подобных реакций необходимы кинетические условия, продолжительные засухи вместе с низким показателем содержания водорода на Марсе могут привести к превращению гётита в гематит.
Fe и Fe2+ могут также окисляться с помощью пероксида водорода (H2O2). Хотя пероксида водорода в атмосфере Марса очень мало, он гораздо более стойкий и сильный окислитель по сравнению с H2O.
Существуют подтверждения возможности образования гематита из магнетита в ходе эрозионных процессов. Эксперименты, проводимые в лаборатории по моделированию марсианских условий в Орхусском университете в Дании, показали, что если соединить смесь магнетитового и кварцевого песка в одной пробирке с частичками кварцевой пыли, то часть магнетита превратится в гематит и получившаяся смесь окрасится в красный цвет. Подобная реакция происходит потому, что химические связи кварца разрушаются, и при контакте с магнетитом атомы кислорода переходят из кварца в магнетит, формируя при этом гематит.
Более конкретно отмечается, что, как показали исследования, «на Марсе основным красителем служит минерал маггемит. Это красная магнитная окись железа, имеющая структуру магнитного минерала магнетита»[1].
Красное небо на Марсе
правитьЦвет неба на Марсе может восприниматься человеческим глазом как красный. Данный факт был установлен благодаря снимкам, полученным в ходе программ по изучению Марса Mars Pathfinder и Mars Exploration Rover. Частицы пыли на поверхности планеты поглощают солнечный свет, в чём и заключается основная причина того, что небо на Марсе может восприниматься как красное. Дополнительное влияние может также оказывать исходящее от частичек пыли фотонное излучение с длиной волны 3 мкм.
Примечания
править- ↑ Портнов, Александр Михайлович, д-р геол.-минералог. наук, проф. Как погибла жизнь на Марсе . Наука и жизнь. — 1999. — № 4 https://www.nkj.ru/archive/articles/9142/. Редакция журнала «Наука и жизнь» https://www.nkj.ru/+(апрель 1999). Дата обращения: 12 апреля 2022. Архивировано 1 апреля 2022 года.