OFFSET
0,1
COMMENTS
Given two equal coaxial circular rings of diameter D located in two parallel planes distant d apart, this constant is the maximum value of d / D so that there exists a catenoid resting on these two rings. - Robert FERREOL, Feb 07 2019
The maximum value of the eccentricity for which the Lagrange series expansion for the solution to Kepler's equation converges. Laplace (1827) calculated the value 0.66195. The Italian astronomer Francesco Carlini (1783 - 1862) found the limit 0.66 five years before Laplace (Sacchetti, 2020). - Amiram Eldar, Aug 17 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 266-268.
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 402.
John Oprea, The Mathematics of Soap Films: Explorations with Maple, Amer. Math. Soc., 2000, p. 183.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..20000
Steven R. Finch, Laplace Limit Constant [Broken link]
Steven R. Finch, Laplace Limit Constant [From the Wayback machine]
J. J. Green, The Lipschitz constant for the radial projection on real l_p - implementation notes, 2012. - N. J. A. Sloane, Sep 19 2012
Pierre-Simon Laplace, Supplément au 5e volume du Traité de mécanique céleste, Paris (1827). See p. 11.
Simon Plouffe, The laplace limit constant(to 500 digits)
Andrea Sacchetti, Francesco Carlini: Kepler's equation and the asymptotic solution to singular differential equations, Historia Mathematica (2020), preprint, arXiv:2002.02679 [math.HO], 2020.
Eric Weisstein's World of Mathematics, Laplace Limit.
Eric Weisstein's World of Mathematics, Kepler's Equation.
Wikipedia, Laplace limit.
FORMULA
Equals sqrt(A085984^2-1). - Jean-François Alcover, May 14 2013
EXAMPLE
0.662743419349181580974742097109252907056233549115022417520392534990971853086...
MATHEMATICA
x/.FindRoot[ x Exp[ Sqrt[ 1+x^2 ] ]/(1+Sqrt[ 1+x^2 ])==1, {x, 1} ]
Sqrt[x^2 - 1] /. FindRoot[ x == Coth[x], {x, 1}, WorkingPrecision -> 30 ] (* Leo C. Stein, Jul 30 2017 *)
RealDigits[Sqrt[Root[{# - (1 + #)/E^(2 #) - 1 &, 1.1996786}]^2 - 1], 10, 100][[1]] (* Eric W. Weisstein, Jul 15 2022 *)
PROG
(PARI) sqrt(solve(u=1, 2, tanh(u)-1/u)^2-1) \\ M. F. Hasler, Feb 01 2011
KEYWORD
AUTHOR
STATUS
approved