login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a085984 -id:a085984
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of Laplace's limit constant.
+10
12
6, 6, 2, 7, 4, 3, 4, 1, 9, 3, 4, 9, 1, 8, 1, 5, 8, 0, 9, 7, 4, 7, 4, 2, 0, 9, 7, 1, 0, 9, 2, 5, 2, 9, 0, 7, 0, 5, 6, 2, 3, 3, 5, 4, 9, 1, 1, 5, 0, 2, 2, 4, 1, 7, 5, 2, 0, 3, 9, 2, 5, 3, 4, 9, 9, 0, 9, 7, 1, 8, 5, 3, 0, 8, 6, 5, 1, 1, 2, 7, 7, 2, 4, 9, 6, 5, 4, 8, 0, 2, 5, 9, 8, 9, 5, 8, 1, 8, 1, 6, 8
OFFSET
0,1
COMMENTS
Maximum value taken by the function x/cosh(x), which occurs at A085984. - Hrothgar, Mar 12 2014
Given two equal coaxial circular rings of diameter D located in two parallel planes distant d apart, this constant is the maximum value of d / D so that there exists a catenoid resting on these two rings. - Robert FERREOL, Feb 07 2019
The maximum value of the eccentricity for which the Lagrange series expansion for the solution to Kepler's equation converges. Laplace (1827) calculated the value 0.66195. The Italian astronomer Francesco Carlini (1783 - 1862) found the limit 0.66 five years before Laplace (Sacchetti, 2020). - Amiram Eldar, Aug 17 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 266-268.
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 402.
John Oprea, The Mathematics of Soap Films: Explorations with Maple, Amer. Math. Soc., 2000, p. 183.
LINKS
Steven R. Finch, Laplace Limit Constant [Broken link]
Steven R. Finch, Laplace Limit Constant [From the Wayback machine]
Andrea Sacchetti, Francesco Carlini: Kepler's equation and the asymptotic solution to singular differential equations, Historia Mathematica (2020), preprint, arXiv:2002.02679 [math.HO], 2020.
Eric Weisstein's World of Mathematics, Laplace Limit.
Eric Weisstein's World of Mathematics, Kepler's Equation.
Wikipedia, Laplace limit.
FORMULA
Equals sqrt(A085984^2-1). - Jean-François Alcover, May 14 2013
EXAMPLE
0.662743419349181580974742097109252907056233549115022417520392534990971853086...
MATHEMATICA
x/.FindRoot[ x Exp[ Sqrt[ 1+x^2 ] ]/(1+Sqrt[ 1+x^2 ])==1, {x, 1} ]
Sqrt[x^2 - 1] /. FindRoot[ x == Coth[x], {x, 1}, WorkingPrecision -> 30 ] (* Leo C. Stein, Jul 30 2017 *)
RealDigits[Sqrt[Root[{# - (1 + #)/E^(2 #) - 1 &, 1.1996786}]^2 - 1], 10, 100][[1]] (* Eric W. Weisstein, Jul 15 2022 *)
PROG
(PARI) sqrt(solve(u=1, 2, tanh(u)-1/u)^2-1) \\ M. F. Hasler, Feb 01 2011
CROSSREFS
KEYWORD
nonn,cons,changed
STATUS
approved
Decimal expansion of (3+sqrt(17))/2.
+10
6
3, 5, 6, 1, 5, 5, 2, 8, 1, 2, 8, 0, 8, 8, 3, 0, 2, 7, 4, 9, 1, 0, 7, 0, 4, 9, 2, 7, 9, 8, 7, 0, 3, 8, 5, 1, 2, 5, 7, 3, 5, 9, 9, 6, 1, 2, 6, 8, 6, 8, 1, 0, 2, 1, 7, 1, 9, 9, 3, 1, 6, 7, 8, 6, 5, 4, 7, 4, 7, 7, 1, 7, 3, 1, 6, 8, 8, 1, 0, 7, 9, 6, 7, 9, 3, 9, 3, 1, 8, 2, 5, 4, 0, 5, 3, 4, 2, 1, 4, 8, 3, 4, 2, 2, 7
OFFSET
1,1
COMMENTS
Continued fraction expansion of (3+sqrt(17))/2 is A109007.
a(n) = A082486(n) for n > 1.
The rectangle R whose shape (i.e., length/width) is (3+sqrt(17))/2 can be partitioned into rectangles of shapes 3 and 3/2 in a manner that matches the periodic continued fraction [3, 3/2, 3, 3/2, ...]. R can also be partitioned into squares so as to match the periodic continued fraction [3, 1, 1, 3, 1, 1,...]. For details, see A188635. - Clark Kimberling, May 07 2011
The positive eigenvalue of the real symmetric 2 X 2 matrix M defined by M(i,j) = max(i,j) = [(1 2), (2 2)] is (3+sqrt(17))/2, while the negative one is (3-sqrt(17))/2. For a generalization, see A085984. - Bernard Schott, Apr 13 2020
A quadratic integer with minimal polynomial x^2 - 3x - 2. - Charles R Greathouse IV, Apr 14 2020
The positive root of x^2 - 3^x - 2. The negative root is -(-3 + sqrt(17))/2 = -0.56155... - Wolfdieter Lang, Dec 10 2022
EXAMPLE
(3+sqrt(17))/2 = 3.56155281280883027491...
MATHEMATICA
FromContinuedFraction[{3, 3/2, {3, 3/2}}]
ContinuedFraction[%, 100] (* [3, 1, 1, 3, 1, 1, ...] *)
RealDigits[N[%%, 120]] (* A178255 *)
N[%%%, 40]
(* Clark Kimberling, May 07 2011 *)
PROG
(PARI) (3+sqrt(17))/2 \\ Charles R Greathouse IV, Apr 14 2020
CROSSREFS
Cf. A082486 (decimal expansion of (5+sqrt(17))/2), A010473 (decimal expansion of sqrt(17)), A109007 (repeat 3, 1, 1), A085984.
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, May 24 2010
STATUS
approved
Expansion of log(1+tan(x)*x).
+10
5
0, 2, -4, 96, -2080, 125440, -8629248, 996007936, -140162633728, 27058965184512, -6350990843576320, 1866805063173799936, -653569786506324738048, 273136898848234632380416, -133034893921204302732328960
OFFSET
0,2
FORMULA
a(n) ~ (2*n)! * (-1)^(n+1) / (n * r^(2*n)), where r = 1.1996786402577338339163698486411419442614587884... (see A085984) is the root of the equation r*tanh(r) = 1. - Vaclav Kotesovec, Jan 23 2015
MATHEMATICA
Log[ 1+Tan[ x ]*x ] (* Even Part *)
nn = 20; Table[(CoefficientList[Series[Log[1 + x*Tan[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 23 2015 *)
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved
Expansion of log(1+tanh(x)*x).
+10
5
0, 2, -20, 576, -33312, 3258880, -485139456, 102300807168, -29028932390912, 10668077137133568, -4929291212351078400, 2797060130323340197888, -1912137417504544127975424, 1550018044651811766917922816
OFFSET
0,2
FORMULA
a(n) ~ -(-1)^n * sqrt(Pi) * 2^(2*n + 1) * n^(2*n - 1/2) / (r^(2*n) * exp(2*n)), where r = A069855 = 0.8603335890193797624838934241376623334118843632... is the root of the equation r * tan(r) = 1. - Vaclav Kotesovec, Dec 21 2017
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Log[1+Tanh[x]*x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Jun 13 2016 *)
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Prior Mathematica program replaced by Harvey P. Dale, Jun 13 2016
STATUS
approved
Decimal expansion of the root of x*tan(x)=1.
+10
4
8, 6, 0, 3, 3, 3, 5, 8, 9, 0, 1, 9, 3, 7, 9, 7, 6, 2, 4, 8, 3, 8, 9, 3, 4, 2, 4, 1, 3, 7, 6, 6, 2, 3, 3, 3, 4, 1, 1, 8, 8, 4, 3, 6, 3, 2, 3, 7, 6, 5, 3, 7, 8, 3, 0, 0, 3, 3, 8, 1, 2, 8, 5, 9, 0, 0, 4, 0, 3, 5, 5, 0, 7, 7, 2, 5, 8, 0, 2, 2, 1, 2, 3, 3, 4, 3, 0, 0, 8, 5, 7, 2, 1, 7, 1, 4, 2, 0, 8, 9, 1, 7, 4, 5
OFFSET
0,1
COMMENTS
Consider a lens-like shape S created by the curves cos(x) and -cos(x) for x in [-Pi/2,Pi/2] and the points A = (u, v), B = (-u, v), C = (-u, -v), D = (u, -v), K = (0, 2v), L = (-2u, 0), M = (0, -2v), N = (2u,0), where u is given by this sequence, and v = u/sqrt(1+u^2). Then ABCD is the rectangle of maximal area, inscribed in S, with sides parallel to the coordinate axes, and KLMN is the rhombus of minimal area, circumscribed around S, with vertices on the coordinate axes. Also, A,B,C,D are the tangent points where the sides of the rhombus touch S, see illustration in the links section. - Gleb Koloskov, Jul 05 2021
LINKS
Gleb Koloskov, Geometric illustration
Eric Weisstein's World of Mathematics, Cotangent [From Eric W. Weisstein, Mar 03 2010]
FORMULA
Equals A346062 * sqrt(2 + 2*sqrt(1 + 256/A346062^2)) / 16. - Gleb Koloskov, Jul 05 2021
EXAMPLE
0.860333589019379762483893424137662333411884363237653783...
MATHEMATICA
N[Minimize[{(x+Cot[x])^2 Sin[x], {x>0, x<Pi/2}}, x][[2]], 300][[1]][[2]] (* Gleb Koloskov, Jul 05 2021 *)
RealDigits[x/.FindRoot[x Tan[x]==1, {x, 1}, WorkingPrecision->120]][[1]] (* Harvey P. Dale, Dec 04 2021 *)
PROG
(PARI) /* 300 significant digits */ s=0.1; for(n=1, 500, s=s+sign(cotan(s)-s)/2^n; if(n>499, print(s*1.)))
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
Benoit Cloitre, May 01 2002
STATUS
approved
Number of functions f:{1,2,...,2n}->{1,2,...,2n} such that every preimage has an even cardinality.
+10
4
1, 2, 40, 2256, 250496, 46063360, 12665422848, 4866544707584, 2490379333697536, 1637285952230719488, 1344814260872574402560, 1349528279475362368847872, 1624638302165034485761966080, 2310920106523435237448955723776, 3834278385523271302103123693142016
OFFSET
0,2
COMMENTS
Note that the empty set has even cardinality.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..210 (terms 0..80 from Alois P. Heinz)
FORMULA
a(n) = (2n)! * [x^(2n)] cosh(x)^(2n).
a(n) = Sum_{i=0..2*n} (n-i)^(2*n)*binomial(2*n,i). - Vladimir Kruchinin, Feb 07 2013
a(n) ~ c * n^(2*n) * 2^(2*n) * (1-r)^(2*n) / ((2-r)^n * r^n * exp(2*n)), where r = 0.1664434403990353015638385297757806508596082... is the root of the equation (2/r-1)^(1-r) = exp(2), and c = 1.66711311920192939687232294044843869828... = 2/A085984. - Vaclav Kotesovec, Sep 03 2014, updated Mar 18 2024
EXAMPLE
a(1) = 2 because there are 2 functions from {1,2} into {1,2} for which the preimage of both elements has even size: 1,1 (where the preimage of 1 is {1,2} and the preimage of 2 is the empty set) and 2,2 (where the preimage of 1 is the empty set and the preimage of 2 is {1,2}).
MAPLE
a:= n-> (2*n)! *coeff(series(cosh(x)^(2*n), x, 2*n+1), x, 2*n):
seq(a(n), n=0..20); # Alois P. Heinz, Jan 19 2013
MATHEMATICA
nn=32; Select[Table[n!Coefficient[Series[Cosh[x]^n, {x, 0, nn}], x^n], {n, 0, nn}], #>0&]
a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Cosh[x]^m, {x, 0, m}]]]; (* Michael Somos, Jul 02 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, n=2*n; n! * polcoeff( cosh(x + x*O(x^n))^n, n))}; /* Michael Somos, Jul 02 2017 */
CROSSREFS
Cf. A085984.
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jan 16 2013
STATUS
approved
Decimal expansion of gamma = 8*lambda^2, a critical threshold of a boundary value problem, where lambda is Laplace's limit constant A033259.
+10
3
3, 5, 1, 3, 8, 3, 0, 7, 1, 9, 1, 2, 5, 1, 6, 1, 2, 0, 6, 2, 0, 7, 8, 3, 7, 0, 9, 3, 2, 3, 8, 8, 2, 3, 5, 8, 7, 1, 0, 9, 1, 3, 4, 2, 1, 1, 9, 5, 1, 2, 8, 4, 3, 6, 8, 1, 8, 2, 5, 4, 1, 8, 5, 2, 5, 3, 4, 9, 2, 1, 8, 6, 0, 8, 7, 7, 3, 5, 3, 0, 6, 2, 2, 4, 5, 1, 3, 9, 8, 4, 8, 8, 7, 6, 5, 9, 9, 9, 7, 5, 7, 3, 9, 5
OFFSET
1,1
COMMENTS
The boundary value problem y''(x) + c*exp(y(x)) = 0, y(0) = y(1) = 0 and c > 0, has 0, 1 or 2 solutions when c > gamma, c = gamma and c < gamma, respectively. [After Steven Finch]
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.8 Laplace limit constant, p. 266.
LINKS
Eric Weisstein's MathWorld, Laplace Limit
EXAMPLE
3.5138307191251612062078370932388235871...
MATHEMATICA
digits = 104; lambda = x /. FindRoot[x Exp[Sqrt[1 + x^2]]/(1 + Sqrt[1 + x^2]) == 1, {x, 1}, WorkingPrecision -> digits + 5]; gamma = 8*lambda^2; RealDigits[gamma, 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons,easy,changed
AUTHOR
STATUS
approved
Decimal expansion of the initial angle in radians above the horizon that maximizes the length of a projectile's trajectory.
+10
2
9, 8, 5, 5, 1, 4, 7, 3, 7, 8, 6, 2, 3, 1, 5, 4, 6, 2, 1, 1, 4, 9, 2, 8, 5, 3, 7, 2, 5, 7, 3, 0, 4, 6, 3, 8, 7, 7, 2, 4, 7, 2, 2, 0, 5, 9, 6, 7, 4, 2, 9, 6, 4, 8, 1, 2, 7, 8, 4, 5, 1, 1, 4, 0, 3, 2, 8, 2, 9, 5, 2, 7, 0, 5, 2, 0, 8, 0, 5, 3, 5, 7, 2, 5, 7, 1, 5
OFFSET
0,1
COMMENTS
A projectile is launched with an initial speed v at angle theta above the horizon. Assuming that the gravitational acceleration g is uniform and neglecting the air resistance, the trajectory is a part of a parabola whose length is maximized when the angle is the root of the equation csc(theta) = coth(csc(theta)). The maximal length is then u * v^2/g, where u = 1.1996... is the root of coth(x) = x (A085984).
The angle in degrees is 56.4658351274...
The initial angle that maximizes the horizontal distance is the well-known result theta = Pi/4 = 45 degrees. The corresponding length of trajectory in this case is u * v^2/g, where u = (sqrt(2) + arcsinh(1))/2 = 1.1477... (A103711), which is 95.67...% of the maximum value.
REFERENCES
Thomas Szirtes, Applied Dimensional Analysis and Modeling, Butterworth-Heinemann, 2007, p. 578.
LINKS
Joshua Cooper and Anton Swifton, Throwing a ball as far as possible, revisited, The American Mathematical Monthly, Vol. 124, No. 10 (2017), pp. 955-959; arXiv preprint, arXiv:1611.02376 [math.HO], 2016.
Haiduke Sarafian, On projectile motion, The Physics Teacher, Vol. 37, No. 2 (1999), pp. 86-88.
Ju Yan-Qing, Projectile motion path length and initial projectile angle, Journal of Science of Teachers' College and University, Vol. 3 (2005), pp. 49-51.
FORMULA
Equals arccsc(u) where u is the root of coth(x) = x (A085984).
EXAMPLE
0.98551473786231546211492853725730463877247220596742...
MATHEMATICA
RealDigits[ArcCsc[x /. FindRoot[x == Coth[x], {x, 1}, WorkingPrecision -> 120]], 10, 100][[1]]
PROG
(PARI) solve(x=0, 1, my(s=sin(x)); s*atanh(s)-1) \\ Charles R Greathouse IV, Sep 18 2024
(PARI) asin(solve(u=.5, 1, tanh(1/u)-u)) \\ Charles R Greathouse IV, Sep 18 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jun 25 2021
STATUS
approved
Decimal expansion of the largest constant 'beta' for which there exists a solution to the differential equation y''(x)+exp(y(x))=0, with y(0)=y(beta)=0.
+10
1
1, 8, 7, 4, 5, 2, 1, 4, 6, 4, 0, 3, 4, 2, 6, 4, 1, 8, 7, 6, 0, 0, 3, 2, 4, 8, 2, 0, 4, 7, 0, 2, 6, 4, 1, 2, 0, 1, 4, 7, 2, 1, 9, 3, 9, 8, 9, 1, 7, 0, 5, 6, 0, 7, 4, 6, 8, 3, 7, 8, 2, 4, 8, 9, 3, 1, 6, 2, 7, 1, 0, 4, 4, 4, 7, 1, 4, 7, 3, 1, 3, 8, 8, 2, 8, 5, 6, 6, 0, 1, 8, 7, 6, 8, 7, 4, 5, 8, 2, 8, 9, 6
OFFSET
1,2
LINKS
FORMULA
beta = sqrt(8)*lambda, where lambda is A033259, the Laplace limit constant 0.66274...
EXAMPLE
1.874521464034264187600324820470264120147219398917056...
MATHEMATICA
lambda = x /. FindRoot[x*Exp[Sqrt[1 + x^2]]/(1 + Sqrt[1 + x^2]) == 1, {x, 1}, WorkingPrecision -> 102]; beta = Sqrt[8]*lambda; RealDigits[beta] // First
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of the surface area of the catenoid-shaped soap film between two parallel coaxial unit-radius circular rings whose distance between their centers is maximal (2*A033259).
+10
1
7, 5, 3, 7, 8, 0, 3, 2, 0, 5, 8, 0, 4, 5, 7, 7, 9, 7, 8, 8, 2, 6, 5, 1, 8, 2, 2, 0, 6, 9, 2, 8, 3, 0, 3, 4, 5, 5, 1, 1, 9, 3, 5, 9, 2, 1, 5, 2, 6, 1, 1, 6, 9, 3, 8, 8, 4, 8, 1, 3, 7, 3, 1, 4, 5, 1, 9, 0, 5, 0, 8, 8, 8, 2, 0, 4, 3, 9, 2, 2, 8, 2, 3, 7, 3, 7, 2
OFFSET
1,1
LINKS
Lev A. Slobozhanin, J. Iwan, D. Alexander and Viral D. Patel, The stability margin for stable weightless liquid bridges, Physics of Fluids, Vol. 14, No. 1 (2002), pp. 209-224. See p. 222.
Eric Weisstein's World of Mathematics, Minimal Surface of Revolution.
FORMULA
Equals 2*Pi*A085984.
EXAMPLE
7.53780320580457797882651822069283034551193592152611...
MATHEMATICA
RealDigits[2 * Pi * x /. FindRoot[x == Coth[x], {x, 1}, WorkingPrecision -> 120], 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons,changed
AUTHOR
Amiram Eldar, Jun 25 2021
STATUS
approved

Search completed in 0.009 seconds