login
Search: a023200 -id:a023200
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partial sums of A023200.
+20
2
3, 10, 23, 42, 79, 122, 189, 268, 365, 468, 577, 704, 867, 1060, 1283, 1512, 1789, 2096, 2409, 2758, 3137, 3534, 3973, 4430, 4893, 5380, 5879, 6492, 7135, 7808, 8547, 9304, 10073, 10896, 11749, 12608, 13485, 14368, 15275, 16212, 17179, 18188, 19275
OFFSET
1,1
COMMENTS
Primes in the partial sum begin: a(1) = 3, a(3) = 23, a(5) = 79, a(11) = 577, a(15) = 1283, a(17) = 1789, a(21) = 3137, a(27) = 5879. Of these, the smaller members of cousin prime pairs which appear among the partial sums of smaller member p of cousin prime pairs begin: 3, 79; which are the next in this subset?
FORMULA
a(n) = SUM[i=i..n] A023200(i) = SUM[i=i..n] {Primes p such that p and p + 4 are both primes}.
EXAMPLE
a(30) = 3 + 7 + 13 + 19 + 37 + 43 + 67 + 79 + 97 + 103 + 109 + 127 + 163 + 193 + 223 + 229 + 277 + 307 + 313 + 349 + 379 + 397 + 439 + 457 + 463 + 487 + 499 + 613 + 643 + 673 = 7808.
MATHEMATICA
Accumulate[Select[Prime[Range[250]], PrimeQ[#+4]&]] (* Harvey P. Dale, Oct 09 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 25 2010
EXTENSIONS
More terms from Max Alekseyev, Jan 31 2010
STATUS
approved
a(n) is the number of cousin primes between p^2 and p*(p+4) where p is the n-th cousin prime A023200(n).
+20
1
2, 1, 1, 2, 5, 4, 4, 2, 6, 4, 7, 7, 5, 9, 12, 13, 14, 14, 9, 12, 10, 11, 13, 20, 16, 15, 16, 15, 23, 19, 22, 26, 27, 28, 26, 22, 20, 27, 25, 27, 28, 26, 35, 29, 29, 29, 30, 45, 30, 36, 22, 30, 39, 39, 40, 44, 44, 43, 34, 38, 36, 48, 54, 43, 38, 43, 49, 45, 47, 53, 38, 51, 51, 62, 56
OFFSET
1,1
COMMENTS
If you graph the order of the consecutive cousin primes along the x-axis (i.e., first pair of cousin primes, second, third,...) and the number of cousin primes in the sequence given above along the y-axis, a clear pattern emerges. As you go farther along the x-axis, greater are the number of consecutive cousin primes, on average, within the interval obtained. If one can prove that there's at least one consecutive cousin prime within each interval, this would imply that cousin primes are infinite. I suspect the number of consecutive primes within each interval will never be zero. Can you prove it?
REFERENCES
C. C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Perseus Books, 1999.
M. D. Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics, HarperCollins Publishers Inc., 2004.
LINKS
J. S. Cheema, Table of n, a(n) for n = 1..1104 (2 prepended by Michael De Vlieger)
EXAMPLE
The 1st pair of cousin primes is (3, 7), between 3^2=9 and 3*7=21 there is 2 cousin primes: 13 and 19. So a(1) = 2.
The 2nd pair of cousin primes is (7, 11), between 7^2=49 and 7*11=77 there is 1 cousin prime: 67. So a(2) = 1.
PROG
(PARI) vcp(nn) = my(list=List(), p=3); listput(list, p); p=7; forprime(q=11, nn, if(q-p==4, listput(list, p)); p=q); Vec(list); \\ A023200
nbcp(p) = my(nb=0); forprime(q=p^2, p*(p+4), if (isprime(q+4), nb++)); nb;
lista(nn) = my(v=vcp(nn)); vector(#v, n, nbcp(v[n])); \\ Michel Marcus, Nov 02 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaspal Singh Cheema, Feb 04 2010
EXTENSIONS
New name and a(1)=2 prepended by Michel Marcus, Nov 02 2022
STATUS
approved
Places n for which A001359(n) and A023200(n) is a twin prime pair.
+20
1
2, 3, 4, 6, 14, 16, 29, 356, 358, 359, 403, 446, 464, 485, 652, 655, 764, 861, 866, 1123, 1301, 1304, 1324, 1328, 1358, 1486, 1610, 2631, 2632, 3735, 3931, 3953, 3956, 3957, 4679, 4855, 4931, 5222, 5226, 5269, 5283, 5292, 5403, 5427, 5445
OFFSET
1,1
LINKS
EXAMPLE
2 is in the sequence because A001359(2)=5 and A023200(2)=7 are twin primes.
PROG
(PARI) lista(nn) = {vp = primes(nn); va = select(x->isprime(x+2), vp); vb = select(x->isprime(x+4), vp); for (n=1, min(#va, #vb), if (vb[n] == va[n]+2, print1(n, ", ")); ); } \\ Michel Marcus, Jul 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 06 2010
EXTENSIONS
Terms beyond 29 from R. J. Mathar, Nov 03 2011
Edited by Michel Marcus, Jul 22 2017
STATUS
approved
First primes from A023200 where distance to the next 4-twin increases.
+20
0
7, 67, 19, 43, 163, 127, 397, 229, 769, 1489, 673, 9547, 1009, 1783, 1693, 2857, 11677, 23869, 499, 1093, 4003, 28657, 10459, 29383, 12487, 6043, 41647, 7039, 17029, 19207, 15073, 24247, 65839, 29629, 18583, 9883, 66697, 100699, 7243
OFFSET
1,1
COMMENTS
a(n) is a "lesser of a 4-twin" prime whose distance to the next twin is 6n.
Both the smallest distance (A052380) and its increment for 4-twins is 6.
FORMULA
The prime a(n)=p is the first which determines a prime quadruple [p, p+4, p+6n, p+6n+4] and difference pattern of [4, 6n-4, 4].
EXAMPLE
a(1)=7 gives [7,11,7+6=13,17] with no primes between 11 and 13.
a(5)=163 specifies [163,167,163+30=191,193] with 4 primes between 167 and 193.
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 07 2000
STATUS
approved
a(n) is the start of a sequence of exactly n members of A023200 under the iteration p -> 3*p+4.
+20
0
7, 13, 3, 1547803
OFFSET
1,1
COMMENTS
Let s(1) = a(n) and s(k+1) = 3*s(k)+4. Then s(1), ..., s(n) are in A023200 but s(n+1) is not in A023200, and a(n) is the least value of s(n) for which this is the case.
EXAMPLE
a(3) = 3 because with s(1) = 3 we have s(2) = 3*3+4 = 13, s(3) = 3*13+4 = 43, s(4) = 3*43+4 = 133; 3, 13, and 43 are in A023200 because 3, 7, 13, 17, 42, 47 are prime, but 133 is not in A023200 because 133 is composite.
MAPLE
f:= proc(p) option remember;
if isprime(p) and isprime(p+4) then 1 + procname(3*p+4) else 0 fi
end proc:
V:= Vector(5): V[1]:= 7: V[3]:= 3: count:= 2:
for p from 13 by 30 while count < 5 do
v:= f(p);
if v > 0 and V[v] = 0 then count:= count+1; V[v]:= p; fi
od:
convert(V, list);
CROSSREFS
Cf. A023200.
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Mar 07 2022
STATUS
approved
Larger member p+4 of cousin primes (p, p+4).
+10
73
7, 11, 17, 23, 41, 47, 71, 83, 101, 107, 113, 131, 167, 197, 227, 233, 281, 311, 317, 353, 383, 401, 443, 461, 467, 491, 503, 617, 647, 677, 743, 761, 773, 827, 857, 863, 881, 887, 911, 941, 971, 1013, 1091, 1097, 1217, 1283, 1301, 1307, 1427, 1433
OFFSET
1,1
COMMENTS
A pair of cousin primes are primes of the form p and p+4 (where p+2 may or may not be a prime). - N. J. A. Sloane, Mar 18 2021
LINKS
Eric Weisstein's World of Mathematics, Cousin Primes
FORMULA
a(n) = A023200(n) + 4 = A087679(n) + 2.
a(n) = 3*A157834(n-1) + 2 = A029710(n-1) + 4 = 6*A056956(n-1) + 5 (thus a(n) mod 6 == 5), for all n>1. - M. F. Hasler, Jan 15 2013
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p4=p+4], (*Print[p4]; *)AppendTo[lst, p4]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
Select[Prime[Range[300]], PrimeQ[#+4]&]+4 (* Harvey P. Dale, Dec 15 2017 *)
PROG
(PARI) forprime(p=2, 1e5, if(isprime(p-4), print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
(Haskell)
a046132 n = a046132_list !! (n-1)
a046132_list = filter ((== 1) . a010051') $ map (+ 4) a000040_list
-- Reinhard Zumkeller, Aug 01 2014
CROSSREFS
Essentially the same as A031505. Cf. A023200, A029710, A098429.
KEYWORD
nonn
STATUS
approved
Numbers k such that phi(k) divides k.
(Formerly M0992)
+10
43
1, 2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 48, 54, 64, 72, 96, 108, 128, 144, 162, 192, 216, 256, 288, 324, 384, 432, 486, 512, 576, 648, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, 2304, 2592, 2916, 3072, 3456, 3888, 4096, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8192, 8748, 9216
OFFSET
1,2
COMMENTS
a(n) divides p^a(n) - 1 for all primes p >= 5. - Benoit Cloitre, Mar 22 2002
Also k such that Sum_{d divides k} mu(d)/d has numerator 1. - Benoit Cloitre, Apr 15 2002
k is here if and only if phi(k) also divides cototient(k). On the other hand, cototient(k) divides phi(k) if and only if k is a prime or power of a prime. - Labos Elemer, May 03 2002
It follows that k/phi(k) = 2 if k is a power of 2 and equal to 3 if k is of the form 6*A003586. - Gary Detlefs, Jun 28 2011
1 and even 3-smooth numbers, cf. A003586. - Reinhard Zumkeller, Jan 06 2014
Numbers k such that k = (1+omega(k))*phi(k). - Farideh Firoozbakht, Oct 02 2014
These are the integers whose largest squarefree divisor is 1, 2 or 6. As such, this sequence is equal to the set V_infinite, defined as the intersection of the V_k for k >= 1, where V_k(x) = {phi_k(n) <= x} and phi_k is the k-th iterate of phi, the Euler function; for instance, V_1 is given by A002202 (see Theorem 7 in Pomerance and Luca). - Michel Marcus, Nov 09 2015
This sequence is contained in A068997. The terms of A068997 not in this sequence have largest squarefree divisor other than 1, 2, or 6, beginning with 10. - Torlach Rush, Dec 07 2017
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 526 pp. 71; 256, Ellipses Paris 2004.
Sárközy A. and Suranyi J., Number Theory Problem Book (in Hungarian), Tankonyvkiado, Budapest, 1972.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Michael W. Ecker and Scott J. Beslin, Problem E3037, Amer. Math. Monthly, Vol. 93, No. 8 (1986), pp. 656-657.
Florian Luca and Carl Pomerance, On the range of the iterated Euler function, Article 8, Integers: Electronic Journal of Combinatorial Number Theory, Proceedings of the Integers Conference 2007, Volume 9 Supplement (2009).
Mathematics Stack Exchange, Is there phi(n)/n = 6
Wacław Sierpiński, Elementary Theory of Numbers, Warszawa, 1964.
FORMULA
k/phi(k) is an integer if and only if k = 1 or k = 2^w * 3^u for w > 0 and u >= 0.
k/phi(k) = 3 if and only if phi(k)|k and 3|k. - Thomas Ordowski, Nov 03 2014
a(n) is approximately exp(sqrt(2*log(2)*log(3)*n))/sqrt(3/2). - Charles R Greathouse IV, Nov 10 2015
From Amiram Eldar, Oct 29 2020: (Start)
a(n) = 2 * A003586(n) for n > 1.
Sum_{n>=1} 1/a(n) = 5/2. (End)
EXAMPLE
12 is in the sequence because 12/phi(12) = 12/4 = 3, which is an integer.
16 is in the sequence because 16/phi(16) = 16/8 = 2, which is an integer.
20 is not in the sequence because 20/phi(20) = 20/8 = 5/2 = 2.5, which is not an integer.
MAPLE
select(n -> n mod numtheory:-phi(n) = 0, [$1..5000]); # Robert Israel, Nov 03 2014
MATHEMATICA
Select[ Range[5000], IntegerQ[ #/EulerPhi[ # ]] &]
m = 5000; Join[{1}, Sort @ Flatten @ Table[2^i*3^j, {i, 1, Log2[m]}, {j, 0, Log[3, m/2^i]}]] (* Amiram Eldar, Oct 29 2020 *)
PROG
(R) library(numbers); j=N=1
while(j<200) if(isNatural((N=N+1)/eulersPhi(N))) dtot[(j=j+1)]=N # Christian N. K. Anderson, Apr 04 2013
(PARI) for(n=1, 10^6, if (n%eulerphi(n)==0, print1(n, ", "))); \\ Joerg Arndt, Apr 04 2013
(PARI) list(lim)=my(v=List([1]), t); for(i=1, logint(lim\1, 2), listput(v, t=2^i); for(j=1, logint(lim\t, 3), listput(v, t*=3))); Set(v) \\ Charles R Greathouse IV, Nov 10 2015
(Haskell)
a007694 n = a007694_list !! (n-1)
a007694_list = 1 : filter even a003586_list
-- Reinhard Zumkeller, Jan 06 2014
(Sage)
is_A007694 = lambda n: euler_phi(n).divides(n)
A007694_list = lambda len: filter(is_A007694, (1..len))
A007694_list(4100) # Peter Luschny, Oct 03 2014
CROSSREFS
Cf. A000010, A049237, A007694, A007947, A003557, A023200, A003586, A001221, A033950, A235353 (subsequence), A068997 (subsequence).
KEYWORD
nonn,nice,easy
STATUS
approved
Primes such that next prime is 4 greater.
+10
38
7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423, 1429
OFFSET
1,1
COMMENTS
Union with A124588 gives A124589. - Reinhard Zumkeller, Dec 23 2006
For any prime p > 3, if p + 4 is prime then necessarily it is the next prime. But there cannot be three consecutive primes with mutual distance 4: If p and p + 4 are prime, then p+8 is an odd multiple of 3 (cf. formula). - M. F. Hasler, Jan 15 2013
The smaller members p of cousin prime pairs (p,p+4) excluding p=3. - Marc Morgenegg, Apr 19 2016
LINKS
Marius A. Burtea, Table of n, a(n) for n = 1..14741 ( first 1000 terms from R. Zumkeller )
FORMULA
a(n) = A031505(n + 1) - 4 = A029708(n) - 2.
a(n) = 1 (mod 6) for all n; (a(n) + 2)/3 = A157834(n), i.e., a(n) = 3*A157834(n) - 2. - M. F. Hasler, Jan 15 2013
EXAMPLE
79 is a term as the next prime is 79 + 4 = 83. 3 is not a term even though 3 + 4 = 7 is prime, since it is not the next one.
MAPLE
for i from 1 to 226 do if ithprime(i+1) = ithprime(i) + 4 then print({ithprime(i)}); fi; od; # Zerinvary Lajos, Mar 19 2007
MATHEMATICA
Select[Prime[Range[225]], NextPrime[#] == # + 4 &] (* Alonso del Arte, Jan 17 2013 *)
Transpose[Select[Partition[Prime[Range[300]], 2, 1], #[[2]]-#[[1]]==4&]] [[1]] (* Harvey P. Dale, Mar 28 2016 *)
PROG
(PARI) forprime(p=1, 1e4, if(nextprime(p+1)-p==4, print1(p, ", "))) \\ Felix Fröhlich, Aug 16 2014
(Magma) [p:p in PrimesUpTo(1700)| IsPrime(p+4) and NextPrime(p) eq p+4] // Marius A. Burtea, Jan 24 2019
(MATLAB)
p=primes(1700); m=1;
for u=1:length(p)-4
if and(isprime(p(u)+4)==1, p(u+1)==p(u)+4); sol(m)=p(u); m=m+1; end
end
sol % Marius A. Burtea, Jan 24 2019
CROSSREFS
Essentially the same as A023200.
KEYWORD
nonn
STATUS
approved
Numbers k such that k-th and (k+1)st primes differ by 4.
+10
31
4, 6, 8, 12, 14, 19, 22, 25, 27, 29, 31, 38, 44, 48, 50, 59, 63, 65, 70, 75, 78, 85, 88, 90, 93, 95, 112, 117, 122, 131, 134, 136, 143, 147, 149, 151, 153, 155, 159, 163, 169, 181, 183, 198, 207, 211, 213, 224, 226, 229, 235, 237, 244, 247, 249, 251
OFFSET
1,1
COMMENTS
Positions of 4 in A001223. - Zak Seidov, Apr 28 2015
LINKS
N. J. A. Sloane and K. D. Bajpai, Table of n, a(n) for n = 1..10213 (first 56 terms from N. J. A. Sloane)
FORMULA
A029710(n) = prime(a(n)). - R. J. Mathar, Apr 30 2024
MATHEMATICA
Select[Range[2, 300], 4 == (Prime[# + 1] - Prime[#]) &] (* Vincenzo Librandi, Apr 28 2015 *)
PROG
(Magma) [n: n in [0..300] | NthPrime(n+1) - NthPrime(n) eq 4]; // Vincenzo Librandi, Apr 28 2015
CROSSREFS
KEYWORD
nonn
STATUS
approved
Largest prime <= 2n.
+10
30
2, 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131
OFFSET
1,1
COMMENTS
a(n) is the smallest k such that C(2n,n) divides k!. - Benoit Cloitre, May 30 2002
a(n) is largest prime factor of C(2n,n) = (2n)!/(n!)^2. - Alexander Adamchuk, Jul 11 2006
a(n) is also the largest prime in the interval [n,2n]. - Peter Luschny, Mar 04 2011
Odd prime p repeats (q-p)/2 times, where q > p is the next prime. In particular, every lesser of twin primes (A001359) occurs 1 time, every lesser more than 3 of cousin primes (A023200) occurs 2 times, etc. - Vladimir Shevelev, Mar 12 2012
LINKS
FORMULA
a(n) = Max[FactorInteger[(2n)!/(n!)^2]]. - Alexander Adamchuk, Jul 11 2006
a(n) = A006530(A000142(2*n)) and a(n) = A006530(A056040(2*n)). - Peter Luschny, Mar 04 2011
a(n) ~ 2*n as n tends to infinity. - Vladimir Shevelev, Mar 12 2012
a(n) = A007917(A005843(n)) = A226078(n, A067434(n)). - Reinhard Zumkeller, May 25 2013
EXAMPLE
n=1, 2n=2, p(1) = 2 = a(1) is the largest prime not exceeding 2.
MAPLE
seq (prevprime(2*i+1), i=1..256);
seq(max(op(select(isprime, [$n..2*n]))), n=1..66); # Peter Luschny, Mar 04 2011
MATHEMATICA
Table[Max[FactorInteger[(2n)!/(n!)^2]], {n, 1, 100}] (* Alexander Adamchuk, Jul 11 2006 *)
NextPrime[2*Range[80]+1, -1] (* Harvey P. Dale, Apr 23 2017 *)
PROG
(PARI) a(n)=precprime(2*n) \\ Charles R Greathouse IV, May 24 2013
(Haskell)
a060308 = a007917 . a005843 -- Reinhard Zumkeller, May 25 2013
(Magma) [NthPrime(#PrimesUpTo(2*n)): n in [2..100]]; // Vincenzo Librandi, Nov 25 2015
CROSSREFS
Apart from initial term, same as A060265.
Cf. A007917 (largest prime <= n), A005843 (2n).
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Mar 27 2001
EXTENSIONS
More terms from Alexander Adamchuk, Jul 11 2006
STATUS
approved

Search completed in 0.063 seconds