login
A360665
Square array T(n, k) = k*((2*n-1)*k+1)/2 read by rising antidiagonals.
1
0, 0, 0, 0, 1, -1, 0, 2, 3, -3, 0, 3, 7, 6, -6, 0, 4, 11, 15, 10, -10, 0, 5, 15, 24, 26, 15, -15, 0, 6, 19, 33, 42, 40, 21, -21, 0, 7, 23, 42, 58, 65, 57, 28, -28, 0, 8, 27, 51, 74, 90, 93, 77, 36, -36, 0, 9, 31, 60, 90, 115, 129, 126, 100, 45, -45
OFFSET
0,8
FORMULA
T(n,k) = T(n,k-1)+k^2.
T(n,n) = A081436(n-1).
T(n,n+1) = A059270(n).
T(n,n+4) = -3*A179297(n+4).
T(n+3,n) = A162254(n).
T(n+5,n) = 3*A101986(n).
From Stefano Spezia, Mar 31 2023: (Start)
O.g.f.: (x*y - y^2 + 2*x*y^2)/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2*x - y + 2*x*y)/2. (End)
EXAMPLE
By rows:
0, 0, -1, -3, -6, -10, -15, -21, -28, ... = -A161680
0, 1, 3, 6, 10, 15, 21, 28, 36, ... = A000217
0, 2, 7, 15, 26, 40, 57, 77, 100, ... = A005449
0, 3, 11, 24, 42, 65, 93, 126, 164, ... = A005475
0, 4, 15, 33, 58, 90, 129, 175, 228, ... = A022265
0, 5, 19, 42, 74, 115, 165, 224, 292, ... = A022267
0, 6, 23, 51, 90, 140, 201, 273, 356, ... = A022269
... .
MATHEMATICA
T[n_, k_] := ((2*n - 1)*k^2 + k)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 31 2023 *)
PROG
(PARI) T(n, k) = ((2*n-1)*k^2+k)/2 \\ Thomas Scheuerle, Mar 17 2023
CROSSREFS
KEYWORD
sign,tabl,easy
AUTHOR
Paul Curtz, Mar 17 2023
STATUS
approved