login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356910
E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(x^2).
3
1, 0, 0, 6, 12, 40, -180, -1512, -11760, 142560, 2701440, 37033920, -47472480, -7299227520, -181704466944, -904179830400, 40024286265600, 1774386897454080, 24426730612869120, -217650777809310720, -26326923875473536000, -662608157128469637120
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} (-k+1)^(k-1) * |Stirling1(n-2*k,k)|/(n-2*k)!.
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (-x^2 * log(1-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(-x^2 * log(1-x)) ).
E.g.f.: A(x) = -x^2 * log(1-x)/LambertW(-x^2 * log(1-x)).
MATHEMATICA
nmax = 21; A[_] = 1;
Do[A[x_] = ((1 - x)^(-x^2))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\3, (-k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(n-2*k)!);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-x^2*log(1-x))^k/k!)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-x^2*log(1-x)))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-x^2*log(1-x)/lambertw(-x^2*log(1-x))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 03 2022
STATUS
approved