OFFSET
1,1
COMMENTS
Here nontrivial unitary divisor d of k means any divisor d|k, such that 1 < d < k and gcd(d, k/d) = 1.
Any hypothetical odd term x in A005820 (triperfect numbers) would also be a member of this sequence. Proof: such an odd number cannot be a prime power (although it must be a square), thus it must have at least two nontrivial unitary divisors (with A034444(x) >= 4). Because sigma(x) = 3*x, it must be a term of A347391. From the illustration given there, we see that any odd square y in that sequence (i.e. with A347381(y)=1) would have an abundancy index of at least three (sigma(y)/y >= 3). But because abundancy index is multiplicative and always > 1 for n > 1, any nontrivial unitary divisor d of an odd triperfect number x must have sigma(d)/d < 3, thus for all such d, A347381(d) <> 1. And neither such divisor d can be a term of A336702, because 3*x is odd, therefore we must have A347381(d) > 1 for all nontrivial unitary divisors d of such a hypothetical x.
LINKS
EXAMPLE
PROG
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Antti Karttunen, Sep 10 2021
STATUS
approved