login
A242179
T(0,0) = 1, T(n+1,2*k) = - T(n,k), T(n+1,2*k+1) = T(n,k), k=0..n, triangle read by rows.
10
1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1
OFFSET
0
COMMENTS
Row n has 2^n terms;
sum of row n = 0 for n > 0, cf. A000007;
numerator of Bernoulli tree, see Woon link; denominators = A106831.
PROG
(Haskell)
a242179 n k = a242179_tabf !! n !! n
a242179_row n = a242179_tabf !! n
a242179_tabf = iterate (concatMap (\x -> [-x, x])) [1] :: (Num t => [[t]])
a242179_list = concat a242179_tabf
(PARI) T(n, k) = (-1)^(n - hammingweight(k));
a(n) = n++; -(-1)^(logint(n, 2) - hammingweight(n)); \\ Kevin Ryde, Mar 11 2021
CROSSREFS
Cf. A059448 (values 0,1), A298952 (values 1,0).
Sequence in context: A070748 A154990 A209615 * A319117 A063747 A210245
KEYWORD
sign,tabf,frac
AUTHOR
Reinhard Zumkeller, Jul 04 2014
STATUS
approved