OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows
Peter Luschny, The Swiss-Knife polynomials.
FORMULA
Let c(k) = frac{(-1)^{floor(k/4)}{2^{floor(k/2)}} [4 not div k] (Iverson notation).
B(n,k) = Sum(v=0..k,(-1)^(v)*binomial(k,v)*n*c(k)*(v+2)^(n-1));
B(n) = (Sum(k=0..n, B(n,k)) / (4^n-2^n)
EXAMPLE
1,
4, -2,
12, -15, 3,
32, -76, 36, 0,
80, -325, 275, 0, -30,
192, -1266, 1710, 0, -720, 180,
448, -4655, 9457, 0, -10290, 5670, -630,
1024, -16472, 48552, 0, -114240, 104160, -25200, 0.
MAPLE
B := proc(n, k) local v, c; c := m -> if irem(m+1, 4) = 0 then 0 else 1/((-1)^iquo(m+1, 4)*2^iquo(m, 2)) fi; add((-1)^(v)*binomial(k, v)*n*c(k)*(v+2)^(n-1), v=0..k) end: seq(print(seq(B(n, k), k=0..(n-1))), n=0..8);
MATHEMATICA
c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; b[n_, k_] := Sum[(-1)^v*Binomial[k, v]*n*c[k]*(v+2)^(n-1), {v, 0, k}]; Table[b[n, k], {n, 0, 8}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, Jan 07 2009
STATUS
approved