OFFSET
1,1
COMMENTS
From Jianing Song, Oct 13 2022: (Start)
Rational primes that decompose in the field Q(sqrt(15)).
Primes p such that kronecker(60,p) = 1.
Primes congruent to 1, 7, 11, 17, 43, 49, 53, 59 modulo 60. (End)
LINKS
EXAMPLE
7 is a term since 5^3 - 3^3 = 7*14.
MATHEMATICA
Select[Prime[Range[150]], Divisible[5^((#-1)/2)-3^((#-1)/2), #]&] (* Harvey P. Dale, Apr 11 2018 *)
PROG
(PARI) \\ s = +-1, d=diff
ptopm1d2(n, x, d, s) = { forprime(p=3, n, p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0, print1(p, ", "))) }
ptopm1d2(1000, 5, 2, -1)
(PARI) isA097956(p) == isprime(p) && kronecker(60, p) == 1 \\ Jianing Song, Oct 13 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Sep 06 2004
STATUS
approved