OFFSET
1,3
REFERENCES
K. Devlin, "How Recreational Mathematics Can Save The World" in "Puzzler's Tribute" Ed. D. Wolfe & T. Rodgers pp. 351-9, A. K. Peters, MA, 2002.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.4.
LINKS
Zai-Qiao Bai, On the cycle expansion for the Lyapunov exponent of a product of random matrices, J. Phys. A: Math. Theo. 40: 8315-8328, 2007.
K. Devlin, New mathematical constant discovered
M. Embree and L. N. Trefethen, Growth and decay of random Fibonacci sequences, Roy. Soc. London Proc. Ser. A, Math. Phys. Eng. Sci. 455 (1999), pp. 2471-2485.
James Grime and Brady Haran, Random Fibonacci Numbers, Numberphile video (2020)
Kevin Hare, J.C. Saunders, Random Fibonacci sequences from balancing words, arXiv:1910.07824 [math.NT], 2019.
Brian Hayes, The Vibonacci Numbers
E. Makover and J. McGowan, An elementary proof that random Fibonacci sequences grow exponentially, arXiv:math/0510159 [math.NT], 2005.
Karyn McLellan, Periodic coefficients and random Fibonacci sequences, Electronic Journal of Combinatorics, 20(4), 2013, #P32.
J. B. Oliveira and L. H de Figueiredo, Interval computation of Viswanath's constant, Reliable Computing 8 (2002) no. 2, 131-138.
Asim Patra and Gopal Krishna Panda, Random balancing-like sequences, Arab. J. Math. (2024).
I. Peterson, Fibonacci at random
I. Peterson, Math Trek, Stepping Beyond Fibonacci Numbers
B. Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.
Lloyd N. Trefethen, Home page
Divakar Viswanath, Home page
D. Viswanath, Random Fibonacci sequences and the number 1.13198824...., Mathematics of Computation, Vol. 69, no. 231 (2000), 1131-1155.
Eric Weisstein's World of Mathematics, Random Fibonacci Sequence
Eric Weisstein's World of Mathematics, Random Matrix
Wikipedia, Viswanath's constant
EXAMPLE
1.1319882487943....
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, Dec 28 2002
EXTENSIONS
More terms from ZQ Bai (phybai(AT)163.com), Dec 17 2007
3 additional terms (computed directly from D. Viswanath program using 2^32 subdivisions, 128 bits double and Wynn epsilon extrapolation) by Jerome Raulin, Oct 13 2017
The proposed last three digits (061 of 1.1319882487943061) have been deleted as there seems to be some doubt about them. - N. J. A. Sloane, Feb 25 2018
STATUS
approved