login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A046943
Continued fraction for Fransen-Robinson constant Integral_{x>=0} 1/Gamma(x).
2
2, 1, 4, 4, 1, 18, 5, 1, 3, 4, 1, 5, 3, 6, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 3, 1, 10, 1, 4, 7, 2, 2, 2, 46, 18, 1, 1, 3, 1, 1, 4, 5, 1, 1, 28, 6, 2, 1, 23, 1, 6, 1, 18, 1, 4, 1, 2, 1, 3, 2, 3, 5, 1, 1, 7, 1, 1, 1, 8, 1, 1, 1, 1, 2, 1, 7, 2, 2, 1, 1, 1, 1, 6, 1, 2, 2, 11, 2, 1, 1, 3, 7, 1
OFFSET
0,1
LINKS
A. Fransen, Accurate Determination of the Inverse Gamma Integral, Nordisk Tidskr. Informationsbehandling (BIT) 19, 137-138, 1979.
A. Fransen and S. Wrigge, High-Precision Values of the Gamma Function and of Some Related Coefficients, Math. Comput. 34, 553-566, 1980.
G. Xiao, Contfrac
EXAMPLE
2.807770242028519365221501186... = 2 + 1/(1 + 1/(4 + 1/(4 + 1/(1 + ...)))).
MATHEMATICA
f := N[Integrate[1/Gamma[x], {x, 0, Infinity}], 55]; ContinuedFraction[f, 50] (* G. C. Greubel, Nov 06 2017 *)
CROSSREFS
Cf. A058655 (decimal expansion). - Harry J. Smith, May 13 2009
Sequence in context: A200756 A108556 A122440 * A107728 A128250 A086145
KEYWORD
cofr,nonn
STATUS
approved