%I #21 Dec 08 2013 06:30:17
%S 65,85,125,130,145,170,185,205,221,250,260,265,290,305,340,365,370,
%T 377,410,442,445,481,485,493,500,505,520,530,533,545,565,580,585,610,
%U 625,629,680,685,689,697,730,740,745,754,765,785,793,820,865,884,890,901,905,949
%N Numbers that are the sum of 2 distinct nonzero squares in exactly 2 ways.
%C Numbers with exactly 2 distinct prime divisors of the form 4k+1, each with multiplicity one, or with only one prime divisor of this form with multiplicity 3, and with no prime divisor of the form 4k+3 to an odd multiplicity. - _Jean-Christophe Hervé_, Dec 01 2013
%H Donovan Johnson, <a href="/A025303/b025303.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%F A004018(a(n)) = 16. - _Jean-Christophe Hervé_, Dec 01 2013
%e 65 = 5*13 = 64+1 = 49 + 16; 85 = 5*17 = 81+4 = 49+16; 125 = 5^3 = 121+4 = 100+25; 130 = 2*5*13 = 121+9 = 81+49. - _Jean-Christophe Hervé_, Dec 01 2013
%t nn = 949; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, 2]] (* _T. D. Noe_, Apr 07 2011 *)
%Y Cf. A001481, A004431, A004018, A230779 (one way).
%Y Cf. analogs for square decompositions: A084645, A084646, A084647, A084648, A084649.
%K nonn
%O 1,1
%A _David W. Wilson_