OFFSET
0,9
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 236.
S. Ramanujan, Some Properties of Bernoulli's Numbers, Collected Papers of Srinivasa Ramanujan, p. 8, Ed. G. H. Hardy et al., AMS Chelsea 2000.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..200
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
Asymptotic expansion of 1/(2x^2) + Sum_{k>0} 1/(x + k)^2 - 1/(6(x^3 - x)) + Sum_{p>3 prime} 1/(p(x^p - x)) = Sum_{k>=0} a(k)/x^(2k + 1). From Ramanujan.
MATHEMATICA
Round[BernoulliB[2*Range[0, 30]]] (* Harvey P. Dale, Sep 14 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, round(bernfrac(2*n))) /* Michael Somos, Apr 15 2005 */
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Jan 10 2003
STATUS
approved